adaptive feedback
Recently Published Documents


TOTAL DOCUMENTS

692
(FIVE YEARS 93)

H-INDEX

37
(FIVE YEARS 4)

2021 ◽  
Vol 15 ◽  
Author(s):  
James Mathew ◽  
Frédéric Crevecoeur

Sensorimotor adaptation is a central function of the nervous system, as it allows humans and other animals to flexibly anticipate their interaction with the environment. In the context of human reaching adaptation to force fields, studies have traditionally separated feedforward (FF) and feedback (FB) processes involved in the improvement of behavior. Here, we review computational models of FF adaptation to force fields and discuss them in light of recent evidence highlighting a clear involvement of feedback control. Instead of a model in which FF and FB mechanisms adapt in parallel, we discuss how online adaptation in the feedback control system can explain both trial-by-trial adaptation and improvements in online motor corrections. Importantly, this computational model combines sensorimotor control and short-term adaptation in a single framework, offering novel perspectives for our understanding of human reaching adaptation and control.


2021 ◽  
Vol 11 (3) ◽  
pp. 389-409
Author(s):  
Linh Thi Thuc Tran ◽  
Sven Erik Nordholm

Acoustic coupling between microphone and loudspeaker is a significant problem in open-fit digital hearing aids. An open-fit compared to a close-fit hearing aid significantly lowers the signal quality and limits the achievable maximum stable gain. Adaptive feedback cancellation (AFC) enables an efficient approach to reduce the impact of acoustic coupling. However, without careful consideration, it can also introduce bias in estimating the feedback path due to the high correlation between the loudspeaker signal and the incoming signal, especially when the incoming signal is spectrally coloured, e.g., speech and music. The prediction error method (PEM) is well known for reducing this bias. The presented study aims to propose a switched PEM with soft-clipping (swPEMSC) that allows for further improvement in convergence/tracking rates, resulting in a better ability to recover from unstable/howling status. This swPEMSC employs a new update rule inspired by a soft-clipping based stability detector (SCSD). It allows to pick up either the PEMSC-NLMS or PEMSC-APA depending on the magnitude of the effective feedback signal; howling corresponds to a large feedback signal. The PEMSC-NLMS with a small step-size ensures a low steady-state error, but slow convergence/tracking rates, while PEMSC-APA with a large step-size allows for fast convergence/tracking rates, but a high steady-state error. By combining those approaches, the proposed approach can take advantage of good characteristics from both. Experimental results using different types of incoming signals and an abrupt change of feedback paths show that the swPEMSC can shorten unstable periods (howling) by improving the convergence and tracking rates while retaining a low steady-state error and good signal quality.


Sign in / Sign up

Export Citation Format

Share Document