scholarly journals Local hidden-variable model for a recent experimental test of quantum nonlocality and local contextuality

2017 ◽  
Vol 381 (28) ◽  
pp. 2230-2234 ◽  
Author(s):  
Brian R. La Cour
2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Andrei Khrennikov

AbstractWe present a quantum mechanical (QM) analysis of Bell’s approach to quantum foundations based on his hidden-variable model. We claim and try to justify that the Bell model contradicts to the Heinsenberg’s uncertainty and Bohr’s complementarity principles. The aim of this note is to point to the physical seed of the aforementioned principles. This is the Bohr’s quantum postulate: the existence of indivisible quantum of action given by the Planck constant h. By contradicting these basic principles of QM, Bell’s model implies rejection of this postulate as well. Thus, this hidden-variable model contradicts not only the QM-formalism, but also the fundamental feature of the quantum world discovered by Planck.


2016 ◽  
Vol 93 (5) ◽  
Author(s):  
Marco Túlio Quintino ◽  
Joseph Bowles ◽  
Flavien Hirsch ◽  
Nicolas Brunner

1972 ◽  
Vol 28 (14) ◽  
pp. 938-941 ◽  
Author(s):  
Stuart J. Freedman ◽  
John F. Clauser

2021 ◽  
Author(s):  
Tom Purves ◽  
Anthony Short

Abstract Within quantum theory, we can create superpositions of different causal orders of events, and observe interference between them. This raises the question of whether quantum theory can produce results that would be impossible to replicate with any classical causal model, thereby violating a causal inequality. This would be a temporal analogue of Bell inequality violation, which proves that no local hidden variable model can replicate quantum results. However, unlike the case of non-locality, we show that quantum experiments can be simulated by a classical causal model, and therefore cannot violate a causal inequality.


1976 ◽  
Vol 37 (8) ◽  
pp. 465-468 ◽  
Author(s):  
Edward S. Fry ◽  
Randall C. Thompson

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 499
Author(s):  
Joseph Bowles ◽  
Flavien Hirsch ◽  
Daniel Cavalcanti

Activation of Bell nonlocality refers to the phenomenon that some entangled mixed states that admit a local hidden variable model in the standard Bell scenario nevertheless reveal their nonlocal nature in more exotic measurement scenarios. We present such a scenario that involves broadcasting the local subsystems of a single-copy of a bipartite quantum state to multiple parties, and use the scenario to study the nonlocal properties of the two-qubit isotropic state:ρα=α|Φ+⟩⟨Φ+|+(1−α)14.We present two main results, considering that Nature allows for (i) the most general no-signalling correlations, and (ii) the most general quantum correlations at the level of any hidden variable theory. We show that the state does not admit a local hidden variable description for α>0.559 and α>12, in cases (i) and (ii) respectively, which in both cases provides a device-independent certification of the entanglement of the state. These bounds are significantly lower than the previously best-known bound of 0.697 for both Bell nonlocality and device-independent entanglement certification using a single copy of the state. Our results show that strong examples of non-classicality are possible with a small number of resources.


Sign in / Sign up

Export Citation Format

Share Document