hidden variable theories
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 6)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
David Wallace

This chapter surveys various proposals to interpret—that is, make sense of—quantum mechanics. We could attempt to think of quantum mechanics in purely instrumentalist terms, as an algorithm to predict observed experimental results. But this fits badly with scientific practice and is probably not viable. We could attempt to modify quantum mechanics itself to resolve the paradoxes, and there are some simple models that attempt to do that: some are ‘hidden-variable’ theories that add extra properties to the theory, some are ‘dynamical-collapse’ theories that modify the theory’s equations. But none of these models succeed in reproducing quantum theory’s predictions outside a relatively narrow range of applications. Or we could try to take the apparent indefiniteness of quantum mechanics literally, and interpret it as a theory of many parallel worlds. The correct interpretation of quantum mechanics remains controversial, but the search for understanding and interpretation of the theory has led to very substantial scientific results and is likely to lead to more.


2021 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Jiri Stavek

In our approach we have combined knowledge of Old Masters (working in this field before the year 1905), New Masters (working in this field after the year 1905) and Dissidents under the guidance of Albert Einstein (EPR Paradox). Two free-will partners A (Alice) and B (Bob) share each a photon from a photon pair emitted from the source and measure the correlations among those entangled photons. Based on the great work of the smartest theorists and experimentalists the interpretation of that entanglement correlations goes unequivocally for the supporters of Niels Bohr: the quantum mechanics (QM) is complete and cannot be modified in any possible way. J.S. Bell stated that all local hidden variable theories are excluded forever, and this is now the dominant statement in the “entanglement community”. Is there any chance to contribute anything reasonable in favor of Albert Einstein´s statement that the QM is incomplete? In our approach we have inserted two new local hidden variables γ and δ (gravitons emitted by the Earth towards individual polarizers = GAIA Effect) into the old trigonometric functions haversin (2θ) = sin2θ and havercosin (2θ) = cos2θ where haversine and havercosine represent orthogonal projections on hyperplanes. These new local hidden variables might contribute to the creation of the entanglement among the separated photons as it is described by the QM. In order to falsify the QM correlation predictions (in the spirit of Karl Popper), we can locally bring to the vicinity of the polarizers two field masses (emanating additional gravitons towards the used polarizers = RHEA Effect, Plato connected the word with ρέω = rheo = flow, RHEA - the daughter of GAIA). The first local hidden variables γ and δ - GAIA Effect - at this moment cannot be controlled by humans, however, the second local hidden variables ε and ζ - RHEA Effect - can be controlled by humans (e.g., the experiment of Henry Cavendish in 1797). This concept might document the Intellectual Mastery of our Nature to hide Her secrets using the mathematical camouflage. We want to pass this scenario into the hands of the big G researchers and the “entanglement community” to evaluate if really our “Nature loves to hide.”


Author(s):  
Joy Christian

We show that the respective oversights in the von Neumann's general theorem against all hidden variable theories and Bell's theorem against their local-realistic counterparts are homologous. Both theorems unjustifiably assume the additivity of expectation values within hidden variable theories to derive their respective conclusions. However, for non-commuting observables, the equivalence of a sum of expectation values and the expectation value of the sum of measurement results, although respected within quantum mechanics, need not hold for hidden variable theories, regardless of specific characteristics such as local realism they may respect. Once this oversight is ameliorated from Bell's argument and local realism is implemented correctly, the bounds on the CHSH correlator work out to be +/-2\/2 instead of +/-2, thereby mitigating the conclusion of Bell's theorem. Consequently, what is ruled out by the Bell-test experiments is not local realism but the additivity of expectation values.


2019 ◽  
Vol 100 (1) ◽  
Author(s):  
He-Liang Huang ◽  
Yi-Han Luo ◽  
B. Bai ◽  
Y.-H. Deng ◽  
H. Wang ◽  
...  

Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 185 ◽  
Author(s):  
Yeong-Cherng Liang ◽  
Yanbao Zhang

The device-independent approach to physics is one where conclusions about physical systems (and hence of Nature) are drawn directly and solely from the observed correlations between measurement outcomes. This operational approach to physics arose as a byproduct of Bell’s seminal work to distinguish, via a Bell test, quantum correlations from the set of correlations allowed by local-hidden-variable theories. In practice, since one can only perform a finite number of experimental trials, deciding whether an empirical observation is compatible with some class of physical theories will have to be carried out via the task of hypothesis testing. In this paper, we show that the prediction-based-ratio method—initially developed for performing a hypothesis test of local-hidden-variable theories—can equally well be applied to test many other classes of physical theories, such as those constrained only by the nonsignaling principle, and those that are constrained to produce any of the outer approximation to the quantum set of correlations due to Navascués-Pironio-Acín. We numerically simulate Bell tests using hypothetical nonlocal sources of correlations to illustrate the applicability of the method in both the independent and identically distributed (i.i.d.) scenario and the non-i.i.d. scenario. As a further application, we demonstrate how this method allows us to unveil an apparent violation of the nonsignaling conditions in certain experimental data collected in a Bell test. This, in turn, highlights the importance of the randomization of measurement settings, as well as a consistency check of the nonsignaling conditions in a Bell test.


2018 ◽  
Vol 98 (1) ◽  
Author(s):  
Adán Cabello ◽  
José R. Portillo ◽  
Alberto Solís ◽  
Karl Svozil

2018 ◽  
Vol 73 (6) ◽  
pp. 467-478 ◽  
Author(s):  
Sergey A. Rashkovskiy

AbstractIn this article we show that results similar to those of the Einstein-Podolsky-Rosen-Bohm (EPRB) Gedankenexperiment and entanglement of photons can be obtained using weak classical light waves if we take into account the discrete (atomic) structure of the detectors and a specific nature of the light-atom interaction. We show that the CHSH (Clauser, Horne, Shimony, and Holt) criterion in the EPRB Gedankenexperiment with classical light waves can exceed not only the maximum value SHV=2 that is predicted by the local hidden-variable theories but also the maximum value \({S_{QM}} = 2\sqrt 2 \) predicted by quantum mechanics.


Author(s):  
Dorcas Attuabea Addo ◽  
Steven Abel ◽  
Richard Kwame Ansah ◽  
Isaac Nkrumah

The core of the paper was to investigate the possibility of local hidden variable theory and its application in quantum teleportation. We reviewed literature on the Bell's inequality which is necessary for quantum teleportation. Quantum teleportation utilises a single-particle entangled state which can be successfully achieved by the application of the locality assumption which leads to Bell's inequality. A violation of the Bell's inequality signifies the nonlocal nature of a single particle useful for quantum teleportation.


Sign in / Sign up

Export Citation Format

Share Document