bell inequality
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 70)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Seyed Rafsanjani ◽  
Moslem Mahdavifar

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1442
Author(s):  
Sayed Abdel-Khalek ◽  
Kamal Berrada ◽  
Mariam Algarni ◽  
Hichem Eleuch

By using the Born Markovian master equation, we study the relationship among the Einstein–Podolsky–Rosen (EPR) steering, Bell nonlocality, and quantum entanglement of entangled coherent states (ECSs) under decoherence. We illustrate the dynamical behavior of the three types of correlations for various optical field strength regimes. In general, we find that correlation measurements begin at their maximum and decline over time. We find that quantum steering and nonlocality behave similarly in terms of photon number during dynamics. Furthermore, we discover that ECSs with steerability can violate the Bell inequality, and that not every ECS with Bell nonlocality is steerable. In the current work, without the memory stored in the environment, some of the initial states with maximal values of quantum steering, Bell nonlocality, and entanglement can provide a delayed loss of that value during temporal evolution, which is of interest to the current study.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ernest Y.-Z. Tan ◽  
René Schwonnek ◽  
Koon Tong Goh ◽  
Ignatius William Primaatmaja ◽  
Charles C.-W. Lim

AbstractDevice-independent quantum key distribution (DIQKD) provides the strongest form of secure key exchange, using only the input–output statistics of the devices to achieve information-theoretic security. Although the basic security principles of DIQKD are now well understood, it remains a technical challenge to derive reliable and robust security bounds for advanced DIQKD protocols that go beyond the previous results based on violations of the CHSH inequality. In this work, we present a framework based on semidefinite programming that gives reliable lower bounds on the asymptotic secret key rate of any QKD protocol using untrusted devices. In particular, our method can in principle be utilized to find achievable secret key rates for any DIQKD protocol, based on the full input–output probability distribution or any choice of Bell inequality. Our method also extends to other DI cryptographic tasks.


2021 ◽  
Author(s):  
Qiang Zhang ◽  
Wen-Zhao Liu ◽  
Yu-Zhe Zhang ◽  
Yi-Zheng Zhen ◽  
Ming-Han Li ◽  
...  

Abstract The security of quantum key distribution (QKD) usually relies on that the users’s devices are well characterized according to the security models made in the security proofs. In contrast,device-independent QKD an entanglement-based protocol permits the security even without any knowledge of the underlying devices. Despite its beauty in theory, device-independent QKD is elusive to realize with current technology. This is because a faithful realization requires ahigh-quality violation of Bell inequality without the fair-sampling assumption. Particularly, in a photonic realization, a rather high detection efficiency is needed where the threshold values depend on the security proofs; this efficiency is far beyond the current reach. Here, both theoretical and experimental innovations yield the realization of device-independent QKD based on a photonic setup. On the theory side, to relax the threshold efficiency for practical deviceindependent QKD, we exploit the random post-selection combined with adding noise for preprocessing, and compute the entropy with complete nonlocal correlations. On the experiment side, we develop a high-quality polarization-entangled photonic source and achieve state-of-theart (heralded) detection efficiency of 87.49%, which outperforms previous experiments and satisfies the threshold efficiency for the first time. Together, we demonstrate device-independent QKD at a secret key rate of 466 bits/s over 20 m standard fiber in the asymptotic limit against collective attacks. Besides, we show the feasibility of generating secret keys at a fiber length of 220 meters. Importantly, our photonic implementation can generate entangled photons at a high rate and in the telecom wavelength, which is desirable for high-speed key generation over long distances. The results not only prove the feasibility of device-independent QKD with realistic devices, but also push the security of communication to an unprecedented level.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Gómez ◽  
D. Uzcátegui ◽  
I. Machuca ◽  
E. S. Gómez ◽  
S. P. Walborn ◽  
...  

AbstractCertification of quantum nonlocality plays a central role in practical applications like device-independent quantum cryptography and random number generation protocols. These applications entail the challenging problem of certifying quantum nonlocality, something that is hard to achieve when the target quantum state is only weakly entangled, or when the source of errors is high, e.g. when photons propagate through the atmosphere or a long optical fiber. Here we introduce a technique to find a Bell inequality with the largest possible gap between the quantum prediction and the classical local hidden variable limit for a given set of measurement frequencies. Our method represents an efficient strategy to certify quantum nonlocal correlations from experimental data without requiring extra measurements, in the sense that there is no Bell inequality with a larger gap than the one provided. Furthermore, we also reduce the photodetector efficiency required to close the detection loophole. We illustrate our technique by improving the detection of quantum nonlocality from experimental data obtained with weakly entangled photons.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shubhayan Sarkar ◽  
Debashis Saha ◽  
Jędrzej Kaniewski ◽  
Remigiusz Augusiak

AbstractBell nonlocality as a resource for device-independent certification schemes has been studied extensively in recent years. The strongest form of device-independent certification is referred to as self-testing, which given a device, certifies the promised quantum state as well as quantum measurements performed on it without any knowledge of the internal workings of the device. In spite of various results on self-testing protocols, it remains a highly nontrivial problem to propose a certification scheme of qudit–qudit entangled states based on violation of a single d-outcome Bell inequality. Here we address this problem and propose a self-testing protocol for the maximally entangled state of any local dimension using the minimum number of measurements possible, i.e., two per subsystem. Our self-testing result can be used to establish unbounded randomness expansion, $${{{\mathrm{log}}}\,}_{2}d$$ log 2 d perfect random bits, while it requires only one random bit to encode the measurement choice.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dylan Durieux ◽  
Willi-Hans Steeb

Abstract We investigate spin Hamilton operators and compare spin coherent states and Bell states concerning entanglement, Husimi distributions, uncertainty relation and Bell inequality. The distances between spin coherent states and Bell states are derived. The Rayleigh quotients of spin Hamilton operators for spin coherent states and Bell states are evaluated and compared.


2021 ◽  
Author(s):  
Sara Restuccia ◽  
Graham M. Gibson ◽  
Leroy Cronin ◽  
Miles J. Padgett
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Alysson Gold ◽  
J. P. Paquette ◽  
Anna Stockklauser ◽  
Matthew J. Reagor ◽  
M. Sohaib Alam ◽  
...  

AbstractAssembling future large-scale quantum computers out of smaller, specialized modules promises to simplify a number of formidable science and engineering challenges. One of the primary challenges in developing a modular architecture is in engineering high fidelity, low-latency quantum interconnects between modules. Here we demonstrate a modular solid state architecture with deterministic inter-module coupling between four physically separate, interchangeable superconducting qubit integrated circuits, achieving two-qubit gate fidelities as high as 99.1 ± 0.5% and 98.3 ± 0.3% for iSWAP and CZ entangling gates, respectively. The quality of the inter-module entanglement is further confirmed by a demonstration of Bell-inequality violation for disjoint pairs of entangled qubits across the four separate silicon dies. Having proven out the fundamental building blocks, this work provides the technological foundations for a modular quantum processor: technology which will accelerate near-term experimental efforts and open up new paths to the fault-tolerant era for solid state qubit architectures.


Sign in / Sign up

Export Citation Format

Share Document