scholarly journals Light-cone sum rules for the heavy-to-light transition in the effective theory

2006 ◽  
Vol 632 (2-3) ◽  
pp. 287-296 ◽  
Author(s):  
Jong-Phil Lee
2006 ◽  
Vol 733 (1-2) ◽  
pp. 1-30 ◽  
Author(s):  
Fulvia De Fazio ◽  
Thorsten Feldmann ◽  
Tobias Hurth

2020 ◽  
Vol 101 (7) ◽  
Author(s):  
Jing Gao ◽  
Cai-Dian Lü ◽  
Yue-Long Shen ◽  
Yu-Ming Wang ◽  
Yan-Bing Wei

2007 ◽  
Author(s):  
Tobias Hurth ◽  
Fulvia De Fazio ◽  
Thorsten Feldmann

Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 86
Author(s):  
Qiang Mao ◽  
Hua-Xing Chen ◽  
Hui-Min Yang

We study the Λ b ( 6146 ) 0 and Λ b ( 6152 ) 0 recently observed by LHCb using the method of Quantum Chromodynamics (QCD) sum rules within the framework of heavy quark effective theory. Our results suggest that they can be interpreted as D-wave bottom baryons of J P = 3 / 2 + and 5 / 2 + respectively, both of which contain two λ -mode excitations. We also investigate other possible assignments containing ρ -mode excitations. We extract all the parameters that are necessary to study their decay properties when using the method of light-cone sum rules. We predict masses of their strangeness partners to be m Ξ b ( 3 / 2 + ) = 6.26 − 0.14 + 0.11 GeV and m Ξ b ( 5 / 2 + ) = 6.26 − 0.14 + 0.11 GeV with the mass splitting Δ M = m Ξ b ( 5 / 2 + ) − m Ξ b ( 3 / 2 + ) = 4.5 − 1.5 + 1.9 MeV, and propose to search for them in future CMS, EIC, and LHCb experiments.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. de Giorgi ◽  
S. Vogl

Abstract The Kaluza-Klein (KK) decomposition of higher-dimensional gravity gives rise to a tower of KK-gravitons in the effective four-dimensional (4D) theory. Such massive spin-2 fields are known to be connected with unitarity issues and easily lead to a breakdown of the effective theory well below the naive scale of the interaction. However, the breakdown of the effective 4D theory is expected to be controlled by the parameters of the 5D theory. Working in a simplified Randall-Sundrum model we study the matrix elements for matter annihilations into massive gravitons. We find that truncating the KK-tower leads to an early breakdown of perturbative unitarity. However, by considering the full tower we obtain a set of sum rules for the couplings between the different KK-fields that restore unitarity up to the scale of the 5D theory. We prove analytically that these are fulfilled in the model under consideration and present numerical tests of their convergence. This work complements earlier studies that focused on graviton self-interactions and yields additional sum rules that are required if matter fields are incorporated into warped extra-dimensions.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ulrich Haisch ◽  
Amando Hala

Abstract We estimate the form factors that parametrise the hadronic matrix elements of proton-to-pion transitions with the help of light-cone sum rules. These form factors are relevant for semi-leptonic proton decay channels induced by baryon-number violating dimension-six operators, as typically studied in the context of grand unified theories. We calculate the form factors in a kinematical regime where the momentum transfer from the proton to the pion is space-like and extrapolate our final results to the regime that is relevant for proton decay. In this way, we obtain estimates for the form factors that show agreement with the state-of-the-art calculations in lattice QCD, if systematic uncertainties are taken into account. Our work is a first step towards calculating more involved proton decay channels where lattice QCD results are not available at present.


Sign in / Sign up

Export Citation Format

Share Document