Development of structural optimization design method for multilayer metal fiber filter in nuclear power plant

2020 ◽  
Vol 124 ◽  
pp. 103361
Author(s):  
Yanmin Zhou ◽  
Zhongning Sun ◽  
Haifeng Gu ◽  
Huiyu Yu
2020 ◽  
Vol 86 (892) ◽  
pp. 20-00248-20-00248
Author(s):  
Takashi OKAFUJI ◽  
Kazuhiro MIURA ◽  
Mitsuhiro NAKAMURA ◽  
Tatsuyuki HARADA ◽  
Noriyuki HAKODA ◽  
...  

Author(s):  
Peter J. Carrato ◽  
Martin Reifschneider

Anchoring structures, systems and components to concrete is a significant activity in the design and construction of a nuclear power plant. Early in this decade the Concrete Capacity Design method (CCD) was adopted by the American Concrete Institute (ACI) for use in the structural design for both commercial and nuclear facilities. This design method and associated qualification tests brings new challenges to designing efficient means for anchoring to concrete structures. Although the CCD method provides guidance on many aspects of concrete anchorage there are a few areas, pertinent to nuclear power plant construction, that are not covered or require significant interpretation of the most recent codes. This paper will focus on the design of shear lugs used to resist significant lateral loads. Results from laboratory tests of shear lugs are presented. These full scale tests considered the interaction of tension and shear loads on the performance of shear lug assemblies. Recommendations for the efficient use of shear lugs are provided.


Author(s):  
Wang Dongwei ◽  
Liu Mingxing ◽  
Wu Xiao ◽  
Yan Hao ◽  
Wu Zhiqiang

Abstract Offshore floating nuclear power plant (FNPP) is characterized by its small and mobility, which is not only able to provide safe and efficient electric energy to remote islands, but to the oil and gas platforms. The safety digital control system (DCS) cabinet, as a carrier for the electronic devices, plays a significant role in ensuring the normal operation of the nuclear power plant. To satisfy the requirements of cabinet used in the sea environment, such as well rigidity, shock load resistance, good seal and corrosion resistance, etc, more and more attention is focused on the cast aluminum cabinet. However, the cast aluminum structure may cause larger weight of cabinet, which inevitability affects the mobility of cabinet, and increases the carried load of ship as well. Therefore, seeking for an effective approach to design a light weight cast aluminum cabinet for the offshore FNPP is definitely necessary. In this work, a frame of cast aluminum cabinet with lightweight is obtained successfully via structure topology optimization design, it is found that the weight of the frame can be reduced to 50% after optimization iterations. Subsequently, the natural frequency of the optimized cast aluminum cabinet is calculated by using ABAQUS, it is seen that the first mode frequency of the frame is beyond 30 Hz, which can meet the basic stiffness requirement. Accordingly, dynamic design analysis method (DDAM) is performed to verify the ability of the optimized cast aluminum cabinet in resisting sudden shock load, and the shock response characteristics of the cabinet are determined. Numerical results support that the optimized frame of cabinet possesses good resistance to high level shock. However, for the assembled cast aluminum cabinet, the vertical shock circumstance turns out to be the most critical condition, high stress and deformation regions occurs at the bracket and column. Reinforcements are proposed to make the bracket stiffer in this shock loading condition.


Author(s):  
Wenxi Tian ◽  
Guanghui Su ◽  
Suizheng Qiu ◽  
Gaopeng Wang ◽  
Qing Lu

The water hammer induced by abrupt velocity change of fluid flow is inevitable for nuclear power plant systems because of the sudden opening or closing of valves, the sudden startup or shutdown of the pumps and the rupture of pipes. The water hammer pressure wave can damage the pipes and cause the abnormal shutdown of Nuclear Power Plant (NPP). The object of this study is a Parallel Pumps Water Supply system (PPWS) adopted in a NPP. The PPWS is composed of two parallel mixed-flow pumps connected with a check valve separately, a container, a throttle flap and pipe lines. The Method of Characteristic line (MOC) was adopted to evaluate the water hammer behaviors of the PPWS during the alternate startup and shutoff conditions of two parallel pumps. A code was developed using Fortran language to compute the transient behaviors including he peak pressure, the flow velocity and the movement of the valve plate. The results indicate that the water hammer behaviors under low speed startup condition differ from that of high speed startup condition. The maximum pressure vibration amplitude is up to 5.0MPa occurring under high-high speed startup condition. The computation results are instructive for the optimization design of the PPWS so as to minimize the damage potential induced by water hammer.


2016 ◽  
Vol 2016.24 (0) ◽  
pp. 201
Author(s):  
Yuki MIYAJIMA ◽  
Takaaki SAKAKIDA ◽  
Kenichiro OGURA ◽  
Yuichi KOIDE ◽  
Ami HARUBEPPU

Sign in / Sign up

Export Citation Format

Share Document