Water Hammer Characteristics for Parallel Pumps Water Supply Systems

Author(s):  
Wenxi Tian ◽  
Guanghui Su ◽  
Suizheng Qiu ◽  
Gaopeng Wang ◽  
Qing Lu

The water hammer induced by abrupt velocity change of fluid flow is inevitable for nuclear power plant systems because of the sudden opening or closing of valves, the sudden startup or shutdown of the pumps and the rupture of pipes. The water hammer pressure wave can damage the pipes and cause the abnormal shutdown of Nuclear Power Plant (NPP). The object of this study is a Parallel Pumps Water Supply system (PPWS) adopted in a NPP. The PPWS is composed of two parallel mixed-flow pumps connected with a check valve separately, a container, a throttle flap and pipe lines. The Method of Characteristic line (MOC) was adopted to evaluate the water hammer behaviors of the PPWS during the alternate startup and shutoff conditions of two parallel pumps. A code was developed using Fortran language to compute the transient behaviors including he peak pressure, the flow velocity and the movement of the valve plate. The results indicate that the water hammer behaviors under low speed startup condition differ from that of high speed startup condition. The maximum pressure vibration amplitude is up to 5.0MPa occurring under high-high speed startup condition. The computation results are instructive for the optimization design of the PPWS so as to minimize the damage potential induced by water hammer.

Author(s):  
H. Boonstra ◽  
A. C. Groot ◽  
C. A. Prins

This paper presents the outcome of a study on the feasibility of a nuclear powered High-Speed Pentamaran, initiated by Nigel Gee and Associates and the Delft University of Technology. It explores the competitiveness of a nuclear power plant for the critical characteristics of a marine propulsion plant. Three nuclear reactor types are selected: the Pressurized Water Reactor (PWR), the Pebble-bed and Prismatic-block HTGR. Their characteristics are estimated for a power range from 100 MWth to 1000 MWth in a parametric design, providing a level base for comparison with conventional gas turbine technology. The reactor scaling is based on reference reactors with an emphasis on marine application. This implies that preference is given to passive safety and simplicity, as they are key-factors for a marine power plant. A case study for a 60-knot Pentamaran shows the impact of a nuclear power plant on a ship designed with combustion gas turbine propulsion. The Prismatic-block HTGR is chosen as most suitable because of its low weight compared to the PWR, in spite of the proven technology of a PWR. The Pebble-bed HTGR is considered too voluminous for High-Speed craft. Conservative data and priority to simple systems and high safety leads to an unfavorable high weight of the nuclear plant in competition with the original gas turbine driven Pentamaran. The nuclear powered ship has some clear advantages at high sailing ranges.


Author(s):  
Wang Dongwei ◽  
Liu Mingxing ◽  
Wu Xiao ◽  
Yan Hao ◽  
Wu Zhiqiang

Abstract Offshore floating nuclear power plant (FNPP) is characterized by its small and mobility, which is not only able to provide safe and efficient electric energy to remote islands, but to the oil and gas platforms. The safety digital control system (DCS) cabinet, as a carrier for the electronic devices, plays a significant role in ensuring the normal operation of the nuclear power plant. To satisfy the requirements of cabinet used in the sea environment, such as well rigidity, shock load resistance, good seal and corrosion resistance, etc, more and more attention is focused on the cast aluminum cabinet. However, the cast aluminum structure may cause larger weight of cabinet, which inevitability affects the mobility of cabinet, and increases the carried load of ship as well. Therefore, seeking for an effective approach to design a light weight cast aluminum cabinet for the offshore FNPP is definitely necessary. In this work, a frame of cast aluminum cabinet with lightweight is obtained successfully via structure topology optimization design, it is found that the weight of the frame can be reduced to 50% after optimization iterations. Subsequently, the natural frequency of the optimized cast aluminum cabinet is calculated by using ABAQUS, it is seen that the first mode frequency of the frame is beyond 30 Hz, which can meet the basic stiffness requirement. Accordingly, dynamic design analysis method (DDAM) is performed to verify the ability of the optimized cast aluminum cabinet in resisting sudden shock load, and the shock response characteristics of the cabinet are determined. Numerical results support that the optimized frame of cabinet possesses good resistance to high level shock. However, for the assembled cast aluminum cabinet, the vertical shock circumstance turns out to be the most critical condition, high stress and deformation regions occurs at the bracket and column. Reinforcements are proposed to make the bracket stiffer in this shock loading condition.


2005 ◽  
Vol 127 (3) ◽  
pp. 230-236 ◽  
Author(s):  
Min-Rae Lee ◽  
Joon-Hyun Lee ◽  
Jung-Teak Kim

The analysis of acoustic emission (AE) signals produced during object leakage is promising for condition monitoring of the components. In this study, an advanced condition monitoring technique based on acoustic emission detection and artificial neural networks was applied to a check valve, one of the components being used extensively in a safety system of a nuclear power plant. AE testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disk movement for valve degradation such as wear and leakage due to foreign object interference in a check valve. It is clearly demonstrated that the evaluation of different types of failure modes such as disk wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters. It is also shown that the leak size can be determined with an artificial neural network.


2019 ◽  
Vol 140 ◽  
pp. 02001 ◽  
Author(s):  
Roman Davydov ◽  
Valery Antonov ◽  
Sergey Makeev ◽  
Yury Batov ◽  
Valentin Dudkin ◽  
...  

The necessity of modernizing current control systems for functional units of a nuclear power plant, as well as the development of new control systems with a high degree of reliability and speed, is substantiated. The advantages of using optical sensors and fiber-optic communication lines to solve these problems are noted. Cases for which it is necessary to develop new fiber-optic sensors for monitoring parameters, for example, the flow of coolant or feed water, are considered. In some of them, it is more expedient to use standard designs of fiber-optic sensors to control the operating parameters of various blocks, for example, to control the electric field strength. A device and a control scheme for the parameters of the units and systems of a nuclear power plant using fiber-optic communication lines have been developed. The results of measuring various parameters of a nuclear reactor are presented. They showed that our proposed fiber-optic control and monitoring system for nuclear power plants operates more reliably and efficiently than systems with analogue control and measurement channels. The use of fiber-optic systems allows real-time remote control and high-speed control in terms of issuing commands to devices. This is very important when servicing a nuclear power plant while it is operating in extreme conditions.


Author(s):  
Qingmu Xu ◽  
Kun Cai ◽  
Jie Qin ◽  
Junkai Yuan ◽  
Juan Li

Water hammer phenomenon is a significant pressure wave in pipe system caused by momentum change when the moving fluid is forced to stop or change direction instantaneously. Common causes of water hammer are sudden valve closing at the end of a pipeline system, pump failure, check valve slam etc. The steam transportation pipeline system may also be vulnerable to water hammer when it confronts with the situation where liquid and steam co-exist. Water hammer often occurs when steam condenses into water in a horizontal section of steam piping. Then steam “picks up” water to form a high-velocity “slug” and create extra stress to pipe. When steam is trapped into sub-cooled water, the collapse of vapor cavity can lead to collision of two columns of liquid, resulting in a large rise in pressure which will damage pipes, supporting structures and hydraulic machinery. Nuclear power plant is composed of complex equipments and piping systems, lots of which contain both liquid and steam. Hence, there is a potential threat of occurrence of water hammer to the normal operation of systems. Thus, this phenomenon needs to be well investigated and prevented with some effective methods. For the purpose of overpressure relief under severe accidents, the spent fuel pool cooling system of CAP1000 series nuclear power plant provides a discharge passage from containment to spent fuel pool. When the containment pressure exceeds the control value, valve is opened to discharge high-temperature and high-pressure steam until the pressure drops to a safety value. During this process, serious water hammer happens, causing pressure rise beyond the design pressure and further leading to damages to pipes and structures. Therefore, water hammer of overpressure discharge pipeline in CAP1000 plant is studied in this work. On the basis of verification of the capabilities of computational code RELAP5/MOD3.3, hydraulic transient of water hammer is simulated under different conditions. It is indicated that after steam discharge stops, residual steam in pipe condenses because of contact with sub-cooled water in spent fuel pool. Subsequently, the rapid backflow and vapor cavity lead to a severe water hammer. The detailed analysis has shown that water temperature of spent fuel pool has a decisive influence on the mechanism of water hammer phenomenon, including collision of liquid column to valve disc and cavity collapse in the horizontal pipe. The collision and separation of liquid column result in relatively lower pressure amplitude.


Author(s):  
Robert A. Leishear

Major accidents that were affected by hydrogen fires and explosions included Chernobyl, Three Mile Island, and Fukushima Daiichi. Smaller piping explosions have occurred at Hamaoka and Brunsbüttel Nuclear Power Plants. An overview of pertinent topics is presented here to compare similarities and differences between these accidents. In particular, a hydrogen ignition mechanism is presented here, where fluid transients, or water hammer, may cause pressures to compress flammable hydrogen gas in reactor systems. As the gas compresses, it heats to temperatures sufficient to cause autoignition, or dieseling. Autoignition then leads to fires or explosions in nuclear power plant systems. To explain this evolving theory on hydrogen ignition during fires and explosions, various nuclear power plant hydrogen accidents require discussion. For example, Chernobyl explosions were unaffected by water hammer, while a Three Mile Island hydrogen fire was a direct result of water hammer following a reactor meltdown, and explosions that followed a meltdown at Fukushima Daiichi occurred during a water hammer event. Other piping damages also occurred during water hammer events. The primary purpose of this paper is to serve as a literature review of past accidents and to provide new insights into those accidents. In short, what is known versus what is unknown is discussed here with respect to the ignition sources of nuclear power plant fires and explosions. How can nuclear power plant safety be assured unless previous fire and explosion causes are understood? Prior to this work, they were not understood.


2011 ◽  
Vol 6 (4) ◽  
Author(s):  
Tadahiro Ikemoto ◽  
Yasumoto Magara

On 11 March 2011, the Great East Japan Earthquake occurred and then the Japanese Prime Minister declared the state of nuclear emergency. The earthquake followed by tsunami and several accidents caused a nuclear power plant in Fukushima Prefecture to release radioactive materials into the environment. Ministry of Health, Labour and Welfare, Japan (MHLW) established a new review meeting to investigate subjects relating to radioactive materials in tap water such as the mechanism of influence of radioactive materials on tap water, measures to reduce the level of radioactive materials contaminated in tap water and medium- and long-term measures based on the results of monitoring. The review meeting published its interim report on 21 June 2011. The report analyzed future prospects as follows: (i) unless a large amount of radioactive materials is released again from the nuclear power plant, tap water has low probability to require measures such as intake restriction and (ii) groundwater that is not affected by surface water has low probability to be affected from radioactive materials. Based on the report, MHLW announced measures to reduce radioactive materials in tap water and also revised the future monitoring policy for more rational and effective implementation. Whilst radioactivity in tap water has not been detected or has been minute if detected since April 2011, the monitoring of tap water and announcement of results will be further continued in Japan.


Sign in / Sign up

Export Citation Format

Share Document