A quasi-three-phase approach for simulating gas-solid fluidized bed under different flow patterns

2021 ◽  
pp. 117041
Author(s):  
Zhao-Quan Wen ◽  
Li-Tao Zhu ◽  
Zheng-Hong Luo
2009 ◽  
Vol 33 (1) ◽  
pp. 359-370 ◽  
Author(s):  
Mauren Fuentes ◽  
Miguel C. Mussati ◽  
Nicolás J. Scenna ◽  
Pío A. Aguirre

2018 ◽  
Vol 61 (3) ◽  
pp. 269-285 ◽  
Author(s):  
R. K. Padhi ◽  
D. T. K. Dora ◽  
Y. K. Mohanty ◽  
G. K. Roy ◽  
B. Sarangi

1991 ◽  
Vol 23 (7-9) ◽  
pp. 1347-1354 ◽  
Author(s):  
F. Trinet ◽  
R. Heim ◽  
D. Amar ◽  
H. T. Chang ◽  
B. E. Rittmann

A three-phase, liquid-fluidized-bed biofilm reactor was operated over wide ranges of liquid velocity, air velocity, medium concentration, and substrate surface loading. The biofilm characteristics (total colonization, polysaccharide content, density, and thickness) and the specific detachment coefficient (bs) were determined by a combination of experimental measurements and a hydrodynamic model. The results demonstrated that dense and thin biofilms were induced by the physical condition of high particle-to-particle contacts and high liquid turbulence. The biofilm's polysaccharide content was increased by increased air turbulence and a low substrate availability. The specific detachment coefficient, bs, was strongly correlated to the concentration of the medium (negatively) and the polysaccharide content (positively). Overall, the bs can be controlled significantly by the gas and liquid velocities; increasing either velocity tends to increase bs.


Sign in / Sign up

Export Citation Format

Share Document