strongly correlated
Recently Published Documents





Afizan Azman ◽  
Mohd. Fikri Azli Abdullah ◽  
Sumendra Yogarayan ◽  
Siti Fatimah Abdul Razak ◽  
Hartini Azman ◽  

<span>Cognitive distraction is one of the several contributory factors in road accidents. A number of cognitive distraction detection methods have been developed. One of the most popular methods is based on physiological measurement. Head orientation, gaze rotation, blinking and pupil diameter are among popular physiological parameters that are measured for driver cognitive distraction. In this paper, lips and eyebrows are studied. These new features on human facial expression are obvious and can be easily measured when a person is in cognitive distraction. There are several types of movement on lips and eyebrows that can be captured to indicate cognitive distraction. Correlation and classification techniques are used in this paper for performance measurement and comparison. Real time driving experiment was setup and faceAPI was installed in the car to capture driver’s facial expression. Linear regression, support vector machine (SVM), static Bayesian network (SBN) and logistic regression (LR) are used in this study. Results showed that lips and eyebrows are strongly correlated and have a significant role in improving cognitive distraction detection. Dynamic Bayesian network (DBN) with different confidence of levels was also used in this study to classify whether a driver is distracted or not.</span>

2022 ◽  
Vol 8 ◽  
Qinghe Jing ◽  
Tianhui Chen ◽  
Zexu Chen ◽  
Lina Lan ◽  
Chen Zhao ◽  

Purpose:To evaluate the clinical characteristics and ocular features of patients with acute secondary angle closure, associated with lens subluxation (ASAC-LS).Methods:We performed a retrospective study at the EENT Hospital of Fudan University, Shanghai, China. A total of 41 affected eyes from 41 patients were enrolled in this study. Furthermore, 20 affected eyes were part of the ASAC-LS cohort and 21 affected eyes were included in the acute primary angle closure (APAC) cohort. The best-corrected visual acuity (BCVA), intraocular pressure (IOP), axial length (AL), minimum corneal curvature (K1), maximum corneal curvature (K2), and anterior chamber depth (ACD) were measured and compared between the 2 cohorts. In addition, inter-eye (intraindividual) comparison was performed.Results:The ASAC-LS cohort exhibited younger ages, more frequent trauma history (35%), lower IOP (27.43 ± 13.86 mmHg vs. 41.27 ± 10.36 mmHg), longer AL (23.96 ± 2.60 vs. 22.49 ± 0.77 mm), shallower ACD (1.28 ± 0.38 vs. 1.58 ± 0.23 mm), and bigger ACD differences (0.99 ± 0.52 vs. 0.15 ± 0.19 mm), as compared with the APAC cohort (all p &lt; 0.05). Moreover, eyes from the lens subluxation cohort experienced worse BCVA, higher IOP, and shallower ACD than their matched unaffected eyes (all p &lt; 0.05). Although longer AL, shallower ACD, and bigger ACD differences were strongly correlated with lens subluxation in a univariate logistic regression analysis, only the ACD difference remained significant in the multivariate model (p = 0.004, OR = 1,510.50). Additionally, according to the receiver operating characteristic (ROC) curve analysis, both ACD and ACD differences had greater value in the differential diagnosis of ASAC-LS and APAC, with a cut-off value of 1.4 and 0.63 mm, respectively.Conclusions:Shallower ACD and larger ACD differences provide the promising diagnostic potential for patients with ASAC-LS.

2022 ◽  
Vol 12 ◽  
Silvia Lucena Lage ◽  
Eduardo Pinheiro Amaral ◽  
Kerry L. Hilligan ◽  
Elizabeth Laidlaw ◽  
Adam Rupert ◽  

The poor outcome of the coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is associated with systemic hyperinflammatory response and immunopathology. Although inflammasome and oxidative stress have independently been implicated in COVID-19, it is poorly understood whether these two pathways cooperatively contribute to disease severity. Herein, we found an enrichment of CD14highCD16− monocytes displaying inflammasome activation evidenced by caspase-1/ASC-speck formation in severe COVID-19 patients when compared to mild ones and healthy controls, respectively. Those cells also showed aberrant levels of mitochondrial superoxide and lipid peroxidation, both hallmarks of the oxidative stress response, which strongly correlated with caspase-1 activity. In addition, we found that NLRP3 inflammasome-derived IL-1β secretion by SARS-CoV-2-exposed monocytes in vitro was partially dependent on lipid peroxidation. Importantly, altered inflammasome and stress responses persisted after short-term patient recovery. Collectively, our findings suggest oxidative stress/NLRP3 signaling pathway as a potential target for host-directed therapy to mitigate early COVID-19 hyperinflammation and also its long-term outcomes.

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 202
Anne-Françoise Rousseau ◽  
Isabelle Kellens ◽  
Pierre Delanaye ◽  
Olivier Bruyère ◽  
Benoit Misset ◽  

(1) Background: The supine testing position is suitable for early quadriceps strength (QS) assessment in intensive care unit, while a seated position is more appropriate for survivors who have regained mobility. Acquiring consistent measurements is essential for longitudinal follow-up. We compared the QS generated in different settings in healthy volunteers. (2) Methods: Isometric QS was assessed using a MicroFet2 and standardised protocols comparing different modalities. Hip and knee flexion angles were, respectively, 45° and 40° (H45-K40) in the supine position, and both at 90° (H90-K90) in the seated position. Dynamometer was either handheld (non-fixed configuration, NFC), or fixed (FC) in a cubicle. (3) Results: QS in H90–K90 and H45-K40 positions were strongly correlated, but QS was higher in the later position regardless of the configuration. Compared to H45-K40, biases of 108.2N (or 28.05%) and 110.3N (27.13%) were observed in H90-K90 position, respectively, in the NFC and FC. These biases were independently and positively associated with QS (p < 0.001). For both position, there were no significant differences between QS measured in NFC or FC. (4) Conclusions: The quadriceps was less efficient in the seated position, compared to the supine position, in healthy volunteers. These findings have practical implications for further assessments and research in critically ill patients.

2022 ◽  
Vol 8 ◽  
David Clofent ◽  
Eva Polverino ◽  
Almudena Felipe ◽  
Galo Granados ◽  
Marta Arjona-Peris ◽  

Background: Interstitial lung sequelae are increasingly being reported in survivors of COVID-19 pneumonia. An early detection of these lesions may help prevent the development of irreversible lung fibrosis. Lung ultrasound (LUS) has shown high diagnostic accuracy in interstitial lung disease (ILD) and could likely be used as a first-line test for post-COVID-19 lung sequelae.Methods: Single-center observational prospective study. Follow-up assessments of consecutive patients hospitalized for COVID-19 pneumonia were conducted 2–5 months after the hospitalization. All patients underwent pulmonary function tests (PFTs), high-resolution computed tomography (HRCT), and LUS. Radiological alterations in HRCT were quantified using the Warrick score. The LUS score was obtained by evaluating the presence of pathological B-lines in 12 thoracic areas (range, 0–12). The correlation between the LUS and Warrick scores was analyzed.Results: Three hundred and fifty-two patients who recovered from COVID-19 pneumonia were recruited between July and September 2020. At follow-up, dyspnea was the most frequent symptom (69.3%). FVC and DLCO alterations were present in 79 (22.4%) and 234 (66.5%) patients, respectively. HRCT showed relevant interstitial lung sequelae (RILS) in 154 (43.8%) patients (Warrick score ≥ 7). The LUS score was strongly correlated with the HRCT Warrick score (r = 0.77) and showed a moderate inverse correlation with DLCO (r = −0.55). The ROC curve analysis revealed that a LUS score ≥ 3 indicated an excellent ability to discriminate patients with RILS (sensitivity, 94.2%; specificity, 81.8%; negative predictive value, 94.7%).Conclusions: LUS could be implemented as a first-line procedure in the evaluation of Post-COVID-19 interstitial lung sequelae. A normal LUS examination rules out the presence of these sequelae in COVID-19 survivors, avoiding the need for additional diagnostic tests such as HRCT.

2022 ◽  
Vol 15 ◽  
Yash Patel ◽  
Nadine Parker ◽  
Giovanni A. Salum ◽  
Zdenka Pausova ◽  
Tomáš Paus

General psychopathology and cognition are likely to have a bidirectional influence on each other. Yet, the relationship between brain structure, psychopathology, and cognition remains unclear. This brief report investigates the association between structural properties of the cerebral cortex [surface area, cortical thickness, intracortical myelination indexed by the T1w/T2w ratio, and neurite density assessed by restriction spectrum imaging (RSI)] with general psychopathology and cognition in a sample of children from the Adolescent Brain Cognitive Development (ABCD) study. Higher levels of psychopathology and lower levels of cognitive ability were associated with a smaller cortical surface area. Inter-regionally—across the cerebral cortex—the strength of association between an area and psychopathology is strongly correlated with the strength of association between an area and cognition. Taken together, structural deviations particularly observed in the cortical surface area influence both psychopathology and cognition.

2022 ◽  
Vol 5 (1) ◽  
Yuta Murakami ◽  
Shintaro Takayoshi ◽  
Tatsuya Kaneko ◽  
Zhiyuan Sun ◽  
Denis Golež ◽  

AbstractMany experiments show that strong excitations of correlated quantum materials can cause non-thermal phases without equilibrium analogues. Understanding the origin and properties of these nonequilibrium states has been challenging due to the limitations of theoretical methods for nonequilibrium strongly correlated systems. In this work, we introduce a generalized Gibbs ensemble description that enables a systematic analysis of the long-time behavior of photo-doped states in Mott insulators based on equilibrium methods. We demonstrate the power of the method by mapping out the nonequilibrium phase diagram of the one-dimensional extended Hubbard model, which features η-pairing and charge density wave phases in a wide photo-doping range. We furthermore clarify that the peculiar kinematics of photo-doped carriers, and the interaction between them, play an essential role in the formation of these non-thermal phases. Our results establish a new path for the systematic analysis of nonequilibrium strongly correlated systems.

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 169
Jung Eun Park ◽  
Tamil Iniyan Gunasekaran ◽  
Yeong Hee Cho ◽  
Seong-Min Choi ◽  
Min-Kyung Song ◽  

Potential biomarkers for Alzheimer’s disease (AD) include amyloid β1–42 (Aβ1–42), t-Tau, p-Tau181, neurofilament light chain (NFL), and neuroimaging biomarkers. Their combined use is useful for diagnosing and monitoring the progress of AD. Therefore, further development of a combination of these biomarkers is essential. We investigated whether plasma NFL/Aβ1–42 can serve as a plasma-based primary screening biomarker reflecting brain neurodegeneration and amyloid pathology in AD for monitoring disease progression and early diagnosis. We measured the NFL and Aβ1–42 concentrations in the CSF and plasma samples and performed correlation analysis to evaluate the utility of these biomarkers in the early diagnosis and monitoring of AD spectrum disease progression. Pearson’s correlation analysis was used to analyse the associations between the fluid biomarkers and neuroimaging data. The study included 136 participants, classified into five groups: 28 cognitively normal individuals, 23 patients with preclinical AD, 22 amyloid-negative patients with amnestic mild cognitive impairment, 32 patients with prodromal AD, and 31 patients with AD dementia. With disease progression, the NFL concentrations increased and Aβ1–42 concentrations decreased. The plasma and CSF NFL/Aβ1–42 were strongly correlated (r = 0.558). Plasma NFL/Aβ1–42 was strongly correlated with hippocampal volume/intracranial volume (r = 0.409). In early AD, plasma NFL/Aβ1–42 was associated with higher diagnostic accuracy than the individual biomarkers. Moreover, in preclinical AD, plasma NFL/Aβ1–42 changed more rapidly than the CSF t-Tau or p-Tau181 concentrations. Our findings highlight the utility of plasma NFL/Aβ1–42 as a non-invasive plasma-based biomarker for early diagnosis and monitoring of AD spectrum disease progression.

2022 ◽  
pp. 1-13
Justin Miron ◽  
Cynthia Picard ◽  
Anne Labonté ◽  
Daniel Auld ◽  
Judes Poirier ◽  

Background: In mouse models of amyloidosis, macrophage receptor 1 (MSR1) and neprilysin (NEP) have been shown to interact to reduce amyloid burden in the brain. Objective: The purpose of this study is to analyze these two gene products in combination with apolipoproteins and Aβ 1 - 42 in the cerebrospinal fluid (CSF) and plasma of individuals at different stages of Alzheimer’s disease (AD), as well as in autopsied brain samples from ROSMAP (Religious Orders Study and Memory and Aging Project). Methods: CSF/plasma levels of MSR1 and NEP were measured using the sensitive primer extension assay technology. CSF Aβ 1 - 42 was assessed with ELISA, while CSF ApoE and ApoJ were measured with the Luminex’s multiplex technology. Brain MSR1, APOE, and CLU (ApoJ) mRNA levels were measured with RNA-Seq and contrasted to amyloid plaques pathology using CERAD staging. Results: While plasma and CSF MSR1 levels are significantly correlated, this correlation was not observed for NEP. In addition to be highly correlated to one another, CSF levels of both MSR1 and NEP are strongly correlated with AD status and CSF Aβ 1 - 42, ApoE, and ApoJ levels. In the cortical tissues of subjects from ROSMAP, MSR1 mRNA levels are correlated with CLU mRNA levels and the CERAD scores but not with APOE mRNA levels. Conclusion: The discrepancies observed between CSF/plasma levels of MSR1 and NEP with CSF Aβ 1 - 42 and ApoE concentrations can be explained by many factors, such as the disease stage or the involvement of the blood-brain barrier breakdown that leads to the infiltration of peripheral monocytes or macrophages.

2022 ◽  
Clive Hambler ◽  
Peter A. Henderson

Abstract 1) Globally-representative monthly rates of change of atmospheric carbon dioxide and methane are compared with global rates of change of sea ice and with Arctic and Antarctic air temperatures. 2) Carbon dioxide is very strongly correlated with sea ice dynamics, with the carbon dioxide rate at Mauna Loa lagging sea ice extent rate by 7 months. 3) Methane is very strongly correlated with sea ice dynamics, with the global (and Mauna Loa) methane rate lagging sea ice extent rate by 5 months. 4) Sea ice melt rate peaks in very tight synchrony with temperature in each Hemisphere. 5) The very high synchrony of the two gases is most parsimoniously explained by a common causality acting in both Hemispheres. 6) Time lags between variables indicate primary drivers of the gas dynamics are due to solar action on the polar regions, not mid-latitudes as is conventionally believed. 7) Results are consistent with a proposed role of a high-latitude temperature-dependent abiotic variable such as sea ice in the annual cycles of carbon dioxide and methane. 8) If sea ice does not drive the net flux of these gases, it is a highly precise proxy for whatever does. 9) Potential mechanisms should be investigated urgently.

Sign in / Sign up

Export Citation Format

Share Document