scholarly journals Gaussian Random Projection Based Non-invertible Cancelable Biometric Templates

2015 ◽  
Vol 54 ◽  
pp. 661-670 ◽  
Author(s):  
Harkeerat Kaur ◽  
Pritee Khanna
2016 ◽  
Vol 25 (01) ◽  
pp. 1550027 ◽  
Author(s):  
Chouaib Moujahdi ◽  
George Bebis ◽  
Sanaa Ghouzali ◽  
Mounia Mikram ◽  
Mohammed Rziza

Personal authentication systems based on biometrics have given rise to new problems and challenges related to the protection of personal data, issues of less concern in traditional authentication systems. The irrevocability of biometric templates makes biometric systems very vulnerable to several attacks. In this paper we present a new approach for biometric template protection. Our objective is to build a non-invertible transformation, based on random projection, which meets the requirements of revocability, diversity, security and performance. In this context, we use the chaotic behavior of logistic map to build the projection vectors using a methodology that makes the construction of the projection matrix depend on the biometric template and its identity. The proposed approach has been evaluated and compared with Biohashing and BioPhasor using a rigorous security analysis. Our extensive experimental results using several databases (e.g., face, finger-knuckle and iris), show that the proposed technique has the ability to preserve and increase the performance of protected systems. Moreover, it is demonstrated that the security of the proposed approach is sufficiently robust to possible attacks keeping an acceptable balance between discrimination, diversity and non-invertibility.


Author(s):  
Morteza Heidari ◽  
Sivaramakrishnan Lakshmivarahan ◽  
Seyedehnafiseh Mirniaharikandehei ◽  
Gopichandh Danala ◽  
Sai Kiran R. Maryada ◽  
...  

2012 ◽  
Vol 23 (7-8) ◽  
pp. 2281-2293
Author(s):  
Zhenwei Shi ◽  
Liu Liu ◽  
Xinya Zhai ◽  
Zhiguo Jiang

2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Junlong Zhu ◽  
Ping Xie ◽  
Qingtao Wu ◽  
Mingchuan Zhang ◽  
Ruijuan Zheng ◽  
...  

We consider a distributed constrained optimization problem over a time-varying network, where each agent only knows its own cost functions and its constraint set. However, the local constraint set may not be known in advance or consists of huge number of components in some applications. To deal with such cases, we propose a distributed stochastic subgradient algorithm over time-varying networks, where the estimate of each agent projects onto its constraint set by using random projection technique and the implement of information exchange between agents by employing asynchronous broadcast communication protocol. We show that our proposed algorithm is convergent with probability 1 by choosing suitable learning rate. For constant learning rate, we obtain an error bound, which is defined as the expected distance between the estimates of agent and the optimal solution. We also establish an asymptotic upper bound between the global objective function value at the average of the estimates and the optimal value.


Sign in / Sign up

Export Citation Format

Share Document