scholarly journals Design and Implementation of Real-Time Mobile-based Water Temperature Monitoring System

2017 ◽  
Vol 124 ◽  
pp. 698-705 ◽  
Author(s):  
Paul B. Bokingkito ◽  
Orven E. Llantos
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Chen ◽  
Xiao Hao ◽  
JianRong Lu ◽  
Kui Yan ◽  
Jin Liu ◽  
...  

In order to solve the problems of high labor cost, long detection period, and low degree of information in current water environment monitoring, this paper proposes a lake water environment monitoring system based on LoRa and Internet of Things technology. The system realizes remote collection, data storage, dynamic monitoring, and pollution alarm for the distributed deployment of multisensor node information (water temperature, pH, turbidity, conductivity, and other water quality parameters). Moreover, the system uses STM32L151C8T6 microprocessor and multiple types of water quality sensors to collect water quality parameters in real time, and the data is packaged and sent to the LoRa gateway remotely by LoRa technology. Then, the gateway completes the bridging of LoRa link to IP link and forwards the water quality information to the Alibaba Cloud server. Finally, end users can realize the water quality control of monitored water area by monitoring management platform. The experimental results show that the system has a good performance in terms of real-time data acquisition accuracy, data transmission reliability, and pollution alarm success rate. The average relative errors of water temperature, pH, turbidity, and conductivity are 0.31%, 0.28%, 3.96%, and 0.71%, respectively. In addition, the signal reception strength of the system within 2 km is better than -81 dBm, and the average packet loss rate is only 94%. In short, the system’s high accuracy, high reliability, and long distance characteristics meet the needs of large area water quality monitoring.


Author(s):  
Mohd Amirul Aizad M. Shahrani ◽  
Safaa Najah Saud Al-Humairi ◽  
Nurul Shahira Mohammad Puad ◽  
Muhammad Asyraf Zulkipli

Author(s):  
Hassan Ali ◽  
Ben Ernest Villaneouva ◽  
Raziq Yaqub

Due to the rising number of heart patients and the apparent need for more robust electrocardiogram (ECG) monitoring of these patients, hospitals are increasingly investing in typical cloud technology or centralized hospital server based remote ECG monitoring systems. However, the deployment these systems in rural communities is limited due to the high cost factor. To counter this challenge, in this paper, we focus on the design and implementation of a low cost real time wireless ambulatory ECG monitoring system. The detected ECG signals are first filtered and amplified and then digitally converted by a microcontroller. The digitized ECG signals are then sent over a ZigBee wireless link to a gateway personal computer (PC) at patient’s premises. The received ECG data from the ZigBee connection is displayed in real time via the National Instruments (NI) Laboratory Virtual Instrument Engineering Workbench (LabVIEW) user interface on the PC for instant personalized evaluation of the ECG data. The ECG data can be saved on the PC and sent via email to a remote cardiologist or a clinician. Additionally, the gateway PC at patient’s end acts as web server for sharing patient’s data over the Internet.  The remote off-site physician (medical staff in a hospital) can use a web browser on a PC, laptop or a mobile phone with Internet connection to access patient’s real time ECG trace for monitoring, expert review and diagnosis. It is shown that the system prototype allows users to acquire reliable ECG signals effectively and simply. The proposed ambulatory ECG system offers an alternative low cost deployment strategy and is especially suited for remote cardiac monitoring of patients in rural communities.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 198740-198747
Author(s):  
Md. Faisal Ahmed ◽  
Moh. Khalid Hasan ◽  
Md. Shahjalal ◽  
Md. Morshed Alam ◽  
Yeong Min Jang

Sign in / Sign up

Export Citation Format

Share Document