scholarly journals Deep Learning-based Data Augmentation for Hydraulic Condition Monitoring System

2020 ◽  
Vol 175 ◽  
pp. 20-27
Author(s):  
Kyutae Kim ◽  
Jongpil Jeong
Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 87
Author(s):  
George Voudiotis ◽  
Sotirios Kontogiannis ◽  
Christos Pikridas 

This paper presents a bee-condition-monitoring system incorporated with a deep-learning process to detect bee swarming. This system includes easy-to-use image acquisition and various end node approaches for either on-site or cloud-based mechanisms. This system also incorporates a new smart CNN engine called Swarm-engine for detecting bees and the issue of notifications in cases of bee swarming conditions to the apiarists. First, this paper presents the authors’ proposed implementation system architecture and end node versions that put it to the test. Then, several pre-trained networks of the authors’ proposed CNN Swarm-engine were also validated to detect bee-clustering events that may lead to swarming. Finally, their accuracy and performance towards detection were evaluated using both cloud cores and embedded ARM devices on parts of the system’s different end-node implementations.


Author(s):  
Ting-Chi Yeh ◽  
Min-Chun Pan

When rotary machines are running, acousto-mechanical signals acquired from the machines are able to reveal their operation status and machine conditions. Mechanical systems under periodic loading due to rotary operation usually respond in measurements with a superposition of sinusoids whose frequencies are integer (or fractional integer) multiples of the reference shaft speed. In this study we built an online real-time machine condition monitoring system based on the adaptive angular-velocity Vold-Kalman filtering order tracking (AV2KF_OT) algorithm, which was implemented through a DSP chip module and a user interface coded by the LabVIEW®. This paper briefly introduces the theoretical derivation and numerical implementation of computation scheme. Experimental works justify the effectiveness of applying the developed online real-time condition monitoring system. They are the detection of startup on the fluid-induced instability, whirl, performed by using a journal-bearing rotor test rig.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 304
Author(s):  
Sakthivel Ganesan ◽  
Prince Winston David ◽  
Praveen Kumar Balachandran ◽  
Devakirubakaran Samithas

Since most of our industries use induction motors, it is essential to develop condition monitoring systems. Nowadays, industries have power quality issues such as sag, swell, harmonics, and transients. Thus, a condition monitoring system should have the ability to detect various faults, even in the presence of power quality issues. Most of the fault diagnosis and condition monitoring methods proposed earlier misidentified the faults and caused the condition monitoring system to fail because of misclassification due to power quality. The proposed method uses power quality data along with starting current data to identify the broken rotor bar and bearing fault in induction motors. The discrete wavelet transform (DWT) is used to decompose the current waveform, and then different features such as mean, standard deviation, entropy, and norm are calculated. The neural network (NN) classifier is used for classifying the faults and for analyzing the classification accuracy for various cases. The classification accuracy is 96.7% while considering power quality issues, whereas in a typical case, it is 93.3%. The proposed methodology is suitable for hardware implementation, which merges mean, standard deviation, entropy, and norm with the consideration of power quality issues, and the trained NN proves stable in the detection of the rotor and bearing faults.


Sign in / Sign up

Export Citation Format

Share Document