Effects of 4-week Impairment-Based Rehabilitation on Jump-Landing Biomechanics in Chronic Ankle Instability Patients

Author(s):  
Mark A. Feger ◽  
Luke Donovan ◽  
C. Collin Herb ◽  
Joseph M. Hart ◽  
Susan A. Saliba ◽  
...  
2019 ◽  
Vol 40 ◽  
pp. 53-58 ◽  
Author(s):  
Gabriel Moisan ◽  
Camille Mainville ◽  
Martin Descarreaux ◽  
Vincent Cantin

2019 ◽  
Vol 54 (12) ◽  
pp. 1296-1303 ◽  
Author(s):  
Mohammad Karimizadeh Ardakani ◽  
Erik A. Wikstrom ◽  
Hooman Minoonejad ◽  
Reza Rajabi ◽  
Ali Sharifnezhad

Context Hopping exercises are recommended as a functional training tool to prevent lower limb injury, but their effects on lower extremity biomechanics in those with chronic ankle instability (CAI) are unclear. Objective To determine if jump-landing biomechanics change after a hop-stabilization intervention. Design Randomized controlled clinical trial. Setting Research laboratory. Patients or Other Participants Twenty-eight male collegiate basketball players with CAI were divided into 2 groups: hop-training group (age = 22.78 ± 3.09 years, mass = 82.59 ± 9.51 kg, height = 187.96 ± 7.93 cm) and control group (age = 22.57 ± 2.76 years, mass = 78.35 ± 7.02 kg, height = 185.69 ± 7.28 cm). Intervention(s) A 6-week supervised hop-stabilization training program that consisted of 18 training sessions. Main Outcome Measure(s) Lower extremity kinetics and kinematics during a jump-landing task and self-reported function were assessed before and after the 6-week training program. Results The hop-stabilization program resulted in improved self-reported function (P < .05), larger sagittal-plane hip- and knee-flexion angles, and greater ankle dorsiflexion (P < .05) relative to the control group. Reduced frontal-plane joint angles at the hip, knee, and ankle as well as decreased ground reaction forces and a longer time to peak ground reaction forces were observed in the hopping group compared with the control group after the intervention (P < .05). Conclusions The 6-week hop-stabilization training program altered jump-landing biomechanics in male collegiate basketball players with CAI. These results may provide a potential mechanistic explanation for improvements in patient-reported outcomes and reductions in injury risk after ankle-sprain rehabilitation programs that incorporate hop-stabilization exercises.


2019 ◽  
Vol 24 (4) ◽  
pp. 151-155
Author(s):  
Jacob T. Hartzell ◽  
Kyle B. Kosik ◽  
Matthew C. Hoch ◽  
Phillip A. Gribble

Clinical Scenario: Chronic ankle instability (CAI) is characterized by the residual symptoms and feelings of instability that persist after an acute ankle sprain. Current literature has identified several neuromuscular impairments associated with CAI that may negatively impact sagittal plane knee kinematics during dynamic activities. This has led researchers to begin examining sagittal plane knee kinematics during jump landing tasks. Understanding changes in movement patterns at the knee may assist clinicians in designing rehabilitation plans that target both the ankle and more proximal joints, such as the knee. Clinical Question: What is the evidence to support the notion that patients with CAI have decreased sagittal plane knee flexion angle at initial contact during a jump-landing task compared to healthy individuals? Summary of Key Findings: The literature was systematically searched for level 4 evidence or higher. The search yielded two case-control studies which met the inclusion criteria. Based on limited evidence, there are mixed results for whether sagittal plane knee kinematic at initial contact differ between those with and without CAI. Clinical Bottom Line: There is weak evidence to support changes in sagittal plane knee kinematics at initial contact during a jump landing in individuals with CAI compared to healthy controls. Strength of Recommendation: In accordance with the Centre for Evidence-Based Medicine, a grade of C for level 4 evidence is recommended due to variable findings.


2020 ◽  
Vol 29 (2) ◽  
pp. 162-167
Author(s):  
Roel De Ridder ◽  
Tine Willems ◽  
Jos Vanrenterghem ◽  
Ruth Verrelst ◽  
Cedric De Blaiser ◽  
...  

Context: Although taping has been proven effective in reducing ankle sprain events in individuals with chronic ankle instability, insight into the precise working mechanism remains limited. Objectives: To evaluate whether the use of taping changes ankle joint kinematics during a sagittal and frontal plane landing task in subjects with chronic ankle instability. Design: Repeated measure design. Setting: Laboratory setting. Participants: A total of 28 participants with chronic ankle instability performed a forward and side jump landing task in a nontaped and taped condition. The taping procedure consisted of a double “figure of 6” and a medial heel lock. Main Outcome Measures: 3D ankle joint kinematics was registered. Statistical parametric mapping was used to assess taping effect on mean ankle joint angles and angular velocity over the landing phase. Results: For both the forward and side jump, a less plantar flexed and a less inverted position of the ankle joint were found in the preparatory phase till around touchdown (TD) in the taped condition (P < .05). In addition, for both jump landing protocols, a decreased dorsiflexion angular velocity was found after TD (P < .05). During the side jump protocol, a brief period of increased inversion angular velocity was registered after TD (P < .05). Conclusions: Taping is capable of altering ankle joint kinematics prior to TD, placing the ankle joint in a less vulnerable position at TD.


2013 ◽  
Vol 38 ◽  
pp. S93
Author(s):  
Benita Kuni ◽  
Johannes Mussler ◽  
Eva Kalkum ◽  
Merkur Alimusaj ◽  
Nikolaus A. Streich ◽  
...  

2015 ◽  
Vol 47 (6) ◽  
pp. 1225-1231 ◽  
Author(s):  
Roel De Ridder ◽  
Tine Willems ◽  
Jos Vanrenterghem ◽  
Mark A. Robinson ◽  
Philip Roosen

Sign in / Sign up

Export Citation Format

Share Document