Deglaciation chronology and paleoclimate of the Pięciu Stawów Polskich/Roztoki Valley, high Tatra Mountains, Western Carpathians, since the Last Glacial Maximum, inferred from 36Cl exposure dating and glacier–climate modelling

2013 ◽  
Vol 293 ◽  
pp. 63-78 ◽  
Author(s):  
Michał Makos ◽  
Jerzy Nitychoruk ◽  
Marek Zreda
2014 ◽  
Vol 82 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Michał Makos ◽  
Jan Dzierżek ◽  
Jerzy Nitychoruk ◽  
Marek Zreda

AbstractDuring the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26–21 ka (LGM I — maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N–S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.


2000 ◽  
Vol 37 (5) ◽  
pp. 751-767 ◽  
Author(s):  
M C Reader ◽  
I Fung ◽  
N McFarlane

A passive mineral dust aerosol model based on source strengths deduced from polar ice core dust concentrations is introduced into the Canadian Centre for Climate Modelling and Analysis (CCCma) second-generation atmospheric general circulation model (GCMII) and used to compare features of the fine particle mineral dust aerosol in a last glacial maximum (LGM) simulation to those of a preindustrial Holocene (MOD) dust simulation. The resulting dust optical thickness is 8-16 times greater over most of the globe during the LGM. The model displays several seasonal characteristics observed in present-day satellite observations of dust, such as the summer maximum over the Arabian Sea and the seasonal north-south shift of the Sahara-Sahel plume. Both of these features are also present in the LGM simulation, though there are some noticeable differences in seasonal variation of dust between the last glacial maximum and the preindustrial Holocene. Since the simulated dust lifetimes are very similar for the MOD and LGM climates, it seems that increased LGM dust lifetime is not the major reason for the observed increase in dust concentration in polar ice cores during the LGM relative to the present.


2012 ◽  
Vol 24 (4) ◽  
pp. 377-394 ◽  
Author(s):  
Dominic A. Hodgson ◽  
Michael J. Bentley ◽  
Christoph Schnabel ◽  
Andreas Cziferszky ◽  
Peter Fretwell ◽  
...  

AbstractWe studied the glacial geomorphology and geochronology of two ice-free valleys in the Dufek Massif (Antarctic Specially Protected Area 119) providing new constraints on past ice sheet thickness in the Weddell Sea embayment. 10Be and 26Al cosmogenic surface exposure dating provided chronological control. Seven glacial stages are proposed. These include an alpine glaciation, with subsequent (mid-Miocene?) over-riding by a warm-based ice sheet. Subsequent advances are marked by a series of minor drift deposits at 760 m altitude at > 1 Ma, followed by at least two later ice sheet advances that are characterized by extensive drift sheet deposition. An advance of plateau ice field outlet glaciers from the south postdated these drift sheets. The most recent advance involved the cold-based expansion of the ice sheet from the north at the Last Glacial Maximum, or earlier, which deposited a series of bouldery moraines during its retreat. This suggests at most a relatively modest expansion of the ice sheet and outlet glaciers dominated by a lateral ice expansion of just 2–3 km and maintaining a thickness similar to that of the northern ice sheet front. These observations are consistent with other reports of modest ice sheet thickening around the Weddell Sea embayment during the Last Glacial Maximum.


Sign in / Sign up

Export Citation Format

Share Document