southern side
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 65)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 8 (2) ◽  
pp. 99-114
Author(s):  
Lamyaa Gamal EL-Deen Taha ◽  
Manar A. Basheer ◽  
Amany Morsi Mohamed

Nowadays, desertification is one of the most serious environment socioeconomic issues and sand dune advances are a major threat that causes desertification. Wadi El-Rayan is one of the areas facing severe dune migration. Therefore, it's important to monitor desertification and study sand dune migration in this area. Image differencing for the years 2000 (Landsat ETM+) and 2019 (OLI images) and Bi-temporal layer stacking was performed. It was found that image differencing is a superior method to get changes of the study area compared to the visual method (Bi-temporal layer stacking). This research develops a quantitative technique for desertification assessment by developing indicators using Landsat images. Spatial distribution of the movement of sand dunes using some spectral indices (NDVI, BSI, LDI, and LST) was studied and a Python script was developed to calculate these indices. The results show that NDVI and BSI indices are the best indices in the identification and detection of vegetation. It was found that mobile sand dunes on the southern side of the lower Wadi El-Rayan Lake caused filling up of large part of the lower lake. The indices results show that sand movement decreased the size of the lower Wadi El-Rayan Lake and there are reclamation activities in the west of the lower lake. The results show that a good result could be achieved from the developed codes compared to ready-made software (ENVI 5).


2021 ◽  
Vol 2 (4) ◽  
pp. 1225-1244
Author(s):  
Monika Feldmann ◽  
Urs Germann ◽  
Marco Gabella ◽  
Alexis Berne

Abstract. This work presents a characterisation of mesocyclone occurrence and frequency in the Alpine region, as observed from the Swiss operational radar network; 5 years of radar data are processed with a thunderstorm detection and tracking algorithm and subsequently with a new mesocyclone detection algorithm. A quality assessment of the radar domain provides additional information on the reliability of the tracking algorithms throughout the domain. The resulting data set provides the first insight into the spatiotemporal distribution of mesocyclones in the Swiss domain, with a more detailed focus on the influence of synoptic weather, diurnal cycle and terrain. Both on the northern and southern side of the Alps mesocyclonic signatures in thunderstorms occur regularly. The regions with the highest occurrence are predominantly the Southern Prealps and to a lesser degree the Northern Prealps. The parallels to hail research over the same region are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qianling Liu ◽  
Zhongjian Zhang ◽  
Bin Zhang ◽  
Wenping Mu ◽  
Huijie Zhang ◽  
...  

AbstractThe identification of open-pit mine water sources is of great significance in preventing water disasters. Combined with hydrochemistry and multivariate statistical analysis, this paper systematically analyzed the hydraulic connections between aquifers and the complex seepage water sources in the pit and roadway of Dagushan iron mine through qualitative analysis and quantitative calculation. According to the hydrochemical characteristics of the study area, the causes of seepage water at different positions in the mining area were reasonably explained. The results show that there is a possible hydraulic connection or similar source of water body between the bedrock fissure aquifer and the eluvium pore aquifer. The water seepage of 2# roadway mainly comes from bedrock fissure aquifer in the north of mining area. The reason for serious water seepage in the 3# roadway and the western side of the pit is that the fault connects the shallow alluvial pore aquifer and bedrock fissure aquifer. The source of water on the southern side pit comes from the river and groundwater on the southern side of the mine. The results presented here provide significant guidance for the management of mine water seepage problems.


Author(s):  
Liana M. Agrios ◽  
Kathy J. Licht ◽  
Trevor Williams ◽  
Sidney R. Hemming ◽  
Lauren Welch ◽  
...  

Tills from moraines adjacent to major ice streams of the Weddell Sea Embayment contain distinct detrital zircon (n = 5304) and K-bearing mineral age populations (n = 323) that, when combined with pebble composition data, can be used to better understand Antarctica’s subglacial geology and ice sheet history. Till representing the Institute, Foundation, Academy, Recovery and Slessor Ice Streams each have distinct detrital zircon age populations. Detrital Ar-Ar ages are mostly younger than zircon ages, and distinctive populations include 270−300 Ma (Institute), 170−190 Ma (Foundation), and 1200−1400 Ma (Recovery), which are not easily explained by known outcrops. Pebble fractions of the Foundation and Academy tills are most diverse with up to >40% exotic erratics. The southern side of the Recovery Glacier has fossiliferous limestone erratics. Mixing models created using a nonlinear squares curve-fitting approach were developed to evaluate contributors of zircons to Foundation Ice Stream till. These model results and pebble lithology data both indicate that unexposed (subglacial) bedrock is mixed with exposed rocks to produce the observed till. Notably, the model required limited local Patuxent Formation input to the Foundation till’s zircon population. Our data suggest that sandstones underlie the Foundation Ice Stream and Recovery Glacier troughs, which has a bearing on basal ice flow conditions and results in geological controls on ice stream location. This geo- and thermo-chronological characterization of the ice streams will enable ice-rafted debris in Weddell Sea marine sediments to be traced back to its sources and interpreted in terms of ice stream dynamics.


2021 ◽  
pp. 46-58
Author(s):  
Alexander Tolstov ◽  
Lidiya Maksimkina ◽  
Alexander Kolesnik ◽  
Vadim Abramov ◽  
Natalya Antonova

New data on the geological structure of the CharoSinskaya zone of deep faults located on the southern side of the Vilyui syneclise are presented. Based on the processing of the seismic survey results, the deep structure of the territory has been analyzed, and graben-like structures similar to those found near the known kimberlite fi lds of Yakutia have been identifi d. Taking into account the results on the mineralogy of the indicator minerals of kimberlite, a new kimberlite field location is predicted.


2021 ◽  
Vol 21 (10) ◽  
pp. 2949-2972
Author(s):  
Alexandre Tuel ◽  
Olivia Martius

Abstract. The successive occurrence of extreme precipitation events on sub-seasonal timescales can lead to large precipitation accumulations and extreme river discharge. In this study, we analyze the sub-seasonal clustering of precipitation extremes in Switzerland and its link to the occurrence and duration of extreme river discharge. We take a statistical approach based on Ripley's K function to characterize the significance of the clustering for each season separately. Temporal clustering of precipitation extremes exhibits a distinct spatiotemporal pattern. It occurs primarily on the northern side of the Alps in winter and on their southern side in fall. Cluster periods notably account for 10 %–16 % of seasonal precipitation in these two regions. The occurrence of a cluster of precipitation extremes generally increases the likelihood and duration of high-discharge events compared to non-clustered precipitation extremes, particularly at low elevations. It is less true in winter, when the magnitude of precipitation extremes is generally lower and much of the precipitation falls as snow. In fall, however, temporal clusters associated with large precipitation accumulations over the southern Alps are found to be almost systematically followed by extreme discharge.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6091
Author(s):  
Marwan Marwan ◽  
Muhammad Yanis ◽  
Gartika Setiya Nugraha ◽  
Muzakir Zainal ◽  
Nasrul Arahman ◽  
...  

Magnetotellurics (MT) is an important geophysical method for exploring geothermal systems, with the Earth resistivity obtained from the MT method proving to be useful for the hydrothermal imaging changes of the system. In this research, we applied the MT method to map the geothermal system of the Seulawah Agam volcano in northern Sumatra, a site intended for the construction of a geothermal power plant with an estimated energy of 230 Mwe. Herein, 3D MT measurements were carried out, covering the entire area of the volcano and the various intersecting local faults from the Seulimeum segment in the NW–SE direction. Based on Occam 2D inversion, a conductive anomaly (<10 ohm·m) near the surface was identified in response to specific manifestation areas, including the Heutsz crater on the northern side and the Cempaga crater on the southern side. A further conductive anomaly was also found at a depth of 1 km, which was presumably due to a clay cap layer covering the fluid in the reservoir layer below the surface, where the manifestation areas are formed at various locations (where faults and fractures are found) owing to the fluid in the reservoir rising to the surface. The MT modeling also revealed that the reservoir layer in Seulawah Agam lies at a depth of 2 km with a higher resistivity of 40–150 ohm·m, which is the main target of geothermal energy exploration. At the same time, the heat source zone where magma is located was estimated to lie in two locations, namely, on the northern side centering on the Heutsz crater area and the southern side in the Cempaga crater area. A clear 3D structure obtained via Occam inversion was also used to visualize the hydrothermal flow in the Seulawah Agam volcano that originates from two heat source zones, where one structure that was consistent across all models is the conductive zone that reaches a depth of 5 km in the south in response to the regional faulting of the Seulimeum segment. Based on the MT research, we concluded that the volcano has the geothermal potential to be tapped into power plant energy in the future.


Author(s):  
W. George Darling ◽  
Melinda A. Lewis

The Lower Greensand (LGS) forms the second most important aquifer in the London Basin but, being largely absent beneath the city itself, has received much less attention than the ubiquitous overlying Chalk aquifer. While the general directions of groundwater flow in the Chalk are well established, there has been much less certainty about flow in the LGS owing to regionally sparse borehole information. This study focuses on two hitherto uncertain aspects of the confined aquifer: the sources of recharge to the west-central London Basin around Slough, and the fate of LGS water where the aquifer thins out on the flank of the London Platform in the Gravesend–Medway–Sheppey area on the southern side of the basin. The application of hydrogeochemical techniques including environmental isotopes indicates that recharge to the Slough area is derived from the northern LGS outcrop, probably supplemented by downward leakage from the Chalk, while upward leakage from the LGS in North Kent is mixing with Chalk water to the extent that some Chalk boreholes on the Isle of Sheppey are abstracting high proportions of water with an LGS fingerprint. In doing so, this study demonstrates the value of re-examining previously published data from a fresh perspective.Thematic collection: This article is part of the Hydrogeology of Sandstone collection available at: https://www.lyellcollection.org/cc/hydrogeology-of-sandstone


Author(s):  
Ferran Colombo ◽  
Jordi Serra ◽  
Patricia Cabello ◽  
José Bedmar ◽  
Federico I. Isla

AbstractThe Inner Río de la Plata Estuary is a sedimentary depositional system that resulted from fluvial-deltaic activity. Gentle Pliocene–Pleistocene slopes make-up the northern side of the estuary whereas small cliffs of the same age constitute the southern side. A long coastal estuarine barrier developed at about 6000 years BP when the maximum flooding surface occurred. Attached to this barrier, and at a lower elevation, is a large strandplain (covering an area of about 2400 km2) which displays more than 220 beach ridges. In different areas, the dating indicates a periodicity of 13.4–13.7 years for the development of each beach ridge. These data are like the periodicity of the ENSO effects, which could be associated with the variability of Sunspots. These ridges were formed shortly after the maximum flooding surface, which was followed by a gradual fall in sea-level that contributed significantly to the Inner Río de la Plata Estuary sedimentary infill. In addition, ENSO activities were probably instrumental in the distribution of the main geoforms in the Inner Rio de la Plata Estuary. Small deltas, which were generated by other rivers and creeks such as the Nogoyá Arroyo and the Gualeguay River, developed coevally with the coastal estuarine barrier. The Ibicuy Delta grew in the middle of the inner Río de la Plata Estuary when the former Paraná River flowed northwards during the sea-level fall. The upper part of the delta front was reworked, giving rise to a large dunefield. Thereafter, a chenier plain developed along with tidal flats. The current Paraná Delta continues to prograde at a rate of about 56–64 m/year (m year−1). The sedimentary infill of the Inner Río de la Plata Estuary occurred along the Holocene.


2021 ◽  
Author(s):  
Monika Feldmann ◽  
Urs Germann ◽  
Marco Gabella ◽  
Alexis Berne

Abstract. This work presents a characterization of mesocyclone occurrence and frequency in the Alpine region, as observed from the Swiss operational radar network. Five years of radar data are processed with a thunderstorm detection and tracking algorithm and subsequently with a mesocyclone detection algorithm. A quality assessment of the radar domain provides additional information on the reliability of the tracking algorithms throughout the domain. The resulting data set provides the first insight into the spatio-temporal distribution of mesocyclones in the Swiss domain, with a more detailed focus on the influence of synoptic weather, diurnal cycle and terrain. Both on the northern and southern side of the Alps mesocyclonic signatures in thunderstorms are frequent. The regions with highest occurrence are predominantly the Southern Prealps and to a lesser degree the Northern Prealps. The parallels to hail research over the same region are discussed.


Sign in / Sign up

Export Citation Format

Share Document