south tibet
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 38)

H-INDEX

33
(FIVE YEARS 3)

MAUSAM ◽  
2021 ◽  
Vol 44 (1) ◽  
pp. 61-68
Author(s):  
R.S. DATTATRAYAM ◽  
TETSOZO SENO

Slip vectors of thirty-nine thrust events occurring along the Himalayan collision zone have been compared with the velocity vectors between the Indian-Eurasian plates derived from the RM 2 and NUVEL 1 models, The observed deviations of the slip vector from the velocity vector have been interpreted in terms of a simple kinematic model according to which the eastern and western blocks of south Tibet are separating from each other, From the model it is estimated that the western and eastern blocks of Tibet are moving at the rate of 3.6 cm/year westwards at 76°Eand 2.6 cm/year eastwards at 94°E with respect to Eurasia respectively, resulting in an east-west extension, projected to the trend at 85°E, at the rate of 5, 5 cm/year. This would correspond to a strain rate of about 6.9 x 10-8year in central Tibetan region.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qian Zhao ◽  
Baochun Huang ◽  
Zhiyu Yi ◽  
Pengfei Xue

Paleocene carbonates from the Gamba area of South Tibet provide the largest paleomagnetic dataset for constraining the paleogeography of the India-Asia collision in the early stage. Previous studies argued that the characteristic remanences (ChRMs) obtained from this unit were remagnetized via orogenic fluids. This study carries out a high-resolution petrographic study on the Paleocene carbonates from Gamba aiming to test the nature of the ChRMs. Electron microscopic observation on magnetic extracts identified a large amount of detrital magnetite that are multi- to single domain in sizes and nanoscale biogenic magnetite. Minor framboidal iron oxides were also identified, which were previously interpreted as authigenic magnetite that substitutes pyrite. However, our scanning and transmission electron microscopic (SEM/TEM) observations, along with optical microscope and Raman spectrum investigations further suggest that these magnetic minerals are pigmentary hematite and goethite that are incapable of carrying a stable primary magnetization. We therefore argue that the ChRMs of the limestones from the Zongpu Formation in the Gamba area are carried by detrital and biogenic magnetites rather than authigenic magnetite. The paleomagnetic data from the Gamba area are interpreted as primary origin and can thus be used for tectonic reconstructions. We emphasize that magnetic extraction, integrated with advanced mineralogic studies (e.g., electron backscatter diffraction and electron diffraction) are effective approaches for investigating the origin of magnetic carriers in carbonate rocks.


2021 ◽  
Author(s):  
Wendong Liang ◽  
Eduardo Garzanti ◽  
Xiumian Hu ◽  
Alberto Resentini ◽  
Giovanni Vezzoli ◽  
...  

2021 ◽  
Vol 13 (18) ◽  
pp. 10402
Author(s):  
Shao Sun ◽  
Qiang Zhang ◽  
Yuanxin Xu ◽  
Ruyue Yuan

Recent decades have witnessed accelerated climate changes across the Qinghai-Tibet Plateau (QTP) and elevated socioeconomic exposure to meteorological hazards. The QTP is called the “the third pole”, exerting remarkable impact on environmental changes in its surrounding regions. While few reports are available for addressing multi-hazard risks over the QTP, we develop an integrated indicator system involving multiple meteorological hazards, i.e., droughts, rainstorms, snowstorms and hailstorms, investigating the spatiotemporal patterns of major hazards over the QTP. The hazard zones of droughts and rainstorms are identified in the southern Gangdise Mountains, the South Tibet Valley, the eastern Nyenchen-Tanglha Mountains, the Hengduan Mountains and West Sichuan Basin. Snowstorm hazard zones distribute in the Himalayas, the Bayan Har Mountains and the central Nyenchen-Tanglha Mountains, while hailstorm hazard zones cluster in central part of the QTP. Since the 21st century, intensified rainstorms are detectable in the densely populated cities of Xining and Lhasa and their adjacent areas, while amplified droughts are observed in grain production areas of the South Tibet Valley and the Hengduan Mountains. Snowstorm hazards show large interannual variations and an increase in pastoral areas, although the overall trend is declining slightly. The frequency of hailstorms gradually decreases in human settlements due to thermal and landscape effects. Mapping meteorological hazards regionalization could help to understand climate risks in the QTP, and provide scientific reference for human adaptation to climate changes in highly sensitive areas.


2021 ◽  
pp. 105892
Author(s):  
Qiang Xu ◽  
Zhenyu Li ◽  
Reinhard Wolff ◽  
Xiucheng Tan ◽  
Ralf Hetzel ◽  
...  
Keyword(s):  

2021 ◽  
Vol 297 ◽  
pp. 120-142
Author(s):  
Jing-Jing Fan ◽  
Qiang Wang ◽  
Jie Li ◽  
Gang-Jian Wei ◽  
Jin-Long Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document