Migration of the Intertropical Convergence Zone in North Africa during the Holocene: Evidence from variations in quartz grain roundness in the lower Nile valley, Egypt

2017 ◽  
Vol 449 ◽  
pp. 22-28 ◽  
Author(s):  
Xiaoshuang Zhao ◽  
Yan Liu ◽  
Alaa Salem ◽  
Leszek Marks ◽  
Fabian Welc ◽  
...  
MAUSAM ◽  
2022 ◽  
Vol 53 (2) ◽  
pp. 197-214
Author(s):  
KSHUDIRAM SAHA ◽  
SURANJANA SAHA

In this part, the paper discusses several aspects of the origin, structure, development and movement of wave disturbances over the North African tropical zone during the northern summer. Analyzing the cases often actual wave disturbances which later in their life cycles developed into hurricanes over the Atlantic, it finds that though the horizontal and vertical shear of the mean zonal wind associated with the mid-tropospheric easterly jet over Africa satisfies the condition of dynamical instability under certain restrictive boundary conditions, it is the influence of a large-amplitude baroclinic wave in mid-latitude westerlies upon a stationary wave in the mountainous region of the east-central north Africa that appears to trigger the birth of a wave disturbance in the intertropical convergence zone over the Nile valley of Sudan between the Marra and the Ethiopian mountains. Physical processes likely to be important in the formation, development and movement of the disturbances are pointed out.


2017 ◽  
Vol 13 (12) ◽  
pp. 1771-1790 ◽  
Author(s):  
Ny Riavo Gilbertinie Voarintsoa ◽  
Loren Bruce Railsback ◽  
George Albert Brook ◽  
Lixin Wang ◽  
Gayatri Kathayat ◽  
...  

Abstract. Petrographic features, mineralogy, and stable isotopes from two stalagmites, ANJB-2 and MAJ-5, respectively from Anjohibe and Anjokipoty caves, allow distinction of three intervals of the Holocene in NW Madagascar. The Malagasy early Holocene (between ca. 9.8 and 7.8 ka) and late Holocene (after ca. 1.6 ka) intervals (MEHI and MLHI, respectively) record evidence of stalagmite deposition. The Malagasy middle Holocene interval (MMHI, between ca. 7.8 and 1.6 ka) is marked by a depositional hiatus of ca. 6500 years. Deposition of these stalagmites indicates that the two caves were sufficiently supplied with water to allow stalagmite formation. This suggests that the MEHI and MLHI intervals may have been comparatively wet in NW Madagascar. In contrast, the long-term depositional hiatus during the MMHI implies it was relatively drier than the MEHI and the MLHI. The alternating wet–dry–wet conditions during the Holocene may have been linked to the long-term migrations of the Intertropical Convergence Zone (ITCZ). When the ITCZ's mean position is farther south, NW Madagascar experiences wetter conditions, such as during the MEHI and MLHI, and when it moves north, NW Madagascar climate becomes drier, such as during the MMHI. A similar wet–dry–wet succession during the Holocene has been reported in neighboring locations, such as southeastern Africa. Beyond these three subdivisions, the records also suggest wet conditions around the cold 8.2 ka event, suggesting a causal relationship. However, additional Southern Hemisphere high-resolution data will be needed to confirm this.


1987 ◽  
Vol 92 (D2) ◽  
pp. 2020 ◽  
Author(s):  
L. I. Davis ◽  
John V. James ◽  
Charles C. Wang ◽  
Chuan Guo ◽  
Peter T. Morris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document