scholarly journals Three distinct Holocene intervals of stalagmite deposition and nondeposition revealed in NW Madagascar, and their paleoclimate implications

2017 ◽  
Vol 13 (12) ◽  
pp. 1771-1790 ◽  
Author(s):  
Ny Riavo Gilbertinie Voarintsoa ◽  
Loren Bruce Railsback ◽  
George Albert Brook ◽  
Lixin Wang ◽  
Gayatri Kathayat ◽  
...  

Abstract. Petrographic features, mineralogy, and stable isotopes from two stalagmites, ANJB-2 and MAJ-5, respectively from Anjohibe and Anjokipoty caves, allow distinction of three intervals of the Holocene in NW Madagascar. The Malagasy early Holocene (between ca. 9.8 and 7.8 ka) and late Holocene (after ca. 1.6 ka) intervals (MEHI and MLHI, respectively) record evidence of stalagmite deposition. The Malagasy middle Holocene interval (MMHI, between ca. 7.8 and 1.6 ka) is marked by a depositional hiatus of ca. 6500 years. Deposition of these stalagmites indicates that the two caves were sufficiently supplied with water to allow stalagmite formation. This suggests that the MEHI and MLHI intervals may have been comparatively wet in NW Madagascar. In contrast, the long-term depositional hiatus during the MMHI implies it was relatively drier than the MEHI and the MLHI. The alternating wet–dry–wet conditions during the Holocene may have been linked to the long-term migrations of the Intertropical Convergence Zone (ITCZ). When the ITCZ's mean position is farther south, NW Madagascar experiences wetter conditions, such as during the MEHI and MLHI, and when it moves north, NW Madagascar climate becomes drier, such as during the MMHI. A similar wet–dry–wet succession during the Holocene has been reported in neighboring locations, such as southeastern Africa. Beyond these three subdivisions, the records also suggest wet conditions around the cold 8.2 ka event, suggesting a causal relationship. However, additional Southern Hemisphere high-resolution data will be needed to confirm this.

Author(s):  
Thomas Creedy ◽  
Carmelo Andujar ◽  
Emmanouil Meramveliotakis ◽  
Victor Noguerales ◽  
Isaac Overcast ◽  
...  

Metabarcoding of DNA extracted from community samples of whole organisms (whole organism community DNA, wocDNA) is increasingly being applied to terrestrial, marine and freshwater metazoan communities to provide rapid, accurate and high resolution data for novel molecular ecology research. The growth of this field has been accompanied by considerable development that builds on microbial metabarcoding methods to develop appropriate and efficient sampling and laboratory protocols for whole organism metazoan communities. However, considerably less attention has focused on ensuring bioinformatic methods are adapted and applied comprehensively in wocDNA metabarcoding. In this study we examined over 600 papers and identified 111 studies that performed COI metabarcoding of wocDNA. We then systematically reviewed the bioinformatic methods employed by these papers to identify the state-of-the-art. Our results show that the increasing use of wocDNA COI metabarcoding for metazoan diversity is characterised by a clear absence of bioinformatic harmonisation, and the temporal trends show little change in this situation. The reviewed literature showed (i) high heterogeneity across pipelines, tasks and tools used, (ii) limited or no adaptation of bioinformatic procedures to the nature of the COI fragment, and (iii) a worrying underreporting of tasks, software and parameters. Based upon these findings we propose a set of recommendations that we think the wocDNA metabarcoding community should consider to ensure that bioinformatic methods are appropriate, comprehensive and comparable. We believe that adhering to these recommendations will improve the long-term integrative potential of wocDNA COI metabarcoding for biodiversity science.


Author(s):  
Thomas Creedy ◽  
Carmelo Andujar ◽  
Emmanouil Meramveliotakis ◽  
Victor Noguerales ◽  
Isaac Overcast ◽  
...  

Metabarcoding of DNA extracted from community samples of whole organisms (whole organism community DNA, wocDNA) is increasingly being applied to terrestrial, marine and freshwater metazoan communities to provide rapid, accurate and high resolution data for novel molecular ecology research. The growth of this field has been accompanied by considerable development that builds on microbial metabarcoding methods to develop appropriate and efficient sampling and laboratory protocols for whole organism metazoan communities. However, considerably less attention has focused on ensuring bioinformatic methods are adapted and applied comprehensively in wocDNA metabarcoding. In this study we examined over 600 papers and identified 111 studies that performed COI metabarcoding of wocDNA. We then systematically reviewed the bioinformatic methods employed by these papers to identify the state-of-the-art. Our results show that the increasing use of wocDNA COI metabarcoding for metazoan diversity is characterised by a clear absence of bioinformatic harmonisation, and the temporal trends show little change in this situation. The reviewed literature showed (i) high heterogeneity across pipelines, tasks and tools used, (ii) limited or no adaptation of bioinformatic procedures to the nature of the COI fragment, and (iii) a worrying underreporting of tasks, software and parameters. Based upon these findings we propose a set of recommendations that we think the wocDNA metabarcoding community should consider to ensure that bioinformatic methods are appropriate, comprehensive and comparable. We believe that adhering to these recommendations will improve the long-term integrative potential of wocDNA COI metabarcoding for biodiversity science.


2011 ◽  
Vol 26 (10) ◽  
pp. 1225-1239 ◽  
Author(s):  
C.B.S. Dotto ◽  
M. Kleidorfer ◽  
A. Deletic ◽  
W. Rauch ◽  
D.T. McCarthy ◽  
...  

2020 ◽  
Author(s):  
Andreas Linsbauer ◽  
Elias Hodel ◽  
Matthias Huss ◽  
Andreas Bauder ◽  
Mauro Fischer ◽  
...  

<p>A glacier inventory describes the extent of all glaciers at a given point in time and in periods of rapid glacier change a frequent update is needed. The Swiss Glacier Inventory 2010 (SGI2010) is the last official inventory for Switzerland and was derived by manual digitization from high-resolution (25 cm) aerial orthophotographs from swisstopo (Federal Office of Topography). To regularly produce a revised inventory, based on the high-quality aerial images from swisstopo acquired at a three-year interval, the workload cannot be covered by GLAMOS (Glacier Monitoring Switzerland, www.glamos.ch) on its own. As part of the development of the new topographic landscape model of Switzerland (swissTLM<sup>3D</sup>), swisstopo introduced – based on requirements defined by GLAMOS – the object class “glaciers”. This secures that Swiss glaciers are recurrently mapped based on high-resolution data on a long term. Swiss Glacier Inventories can therefore be derived by GLAMOS from the TLM object class “glaciers”.</p><p>The SGI2020 is the first glacier inventory produced by GLAMOS based on the new workflow and stands out with an unprecedented level of detail regarding glacier mapping. As the glacier-excerpt from the swisstopo TLM is a landcover dataset, produced according to guidelines for topographical purpose, it does not fit all glaciological requirements. Here, we present the necessary steps and adjustments to derive a new glacier inventory for the period 2013-2018 that fits all glaciological criteria. Furthermore, we compare the resulting dataset with former SGI’s and pin down the major changes and differences emerging from different methodologies used. We particularly emphasize on problematic definitions of glacier boundaries related to snow coverage and/or supraglacial debris and provide updated results for glacier area changes in the Swiss Alps over the last decades.</p>


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1327 ◽  
Author(s):  
Amani Mahindawansha ◽  
Lutz Breuer ◽  
Alejandro Chamorro ◽  
Philipp Kraft

High-resolution data on a field scale is very important for improving our understanding of hydrological processes. This is particularly the case for water-demanding agricultural production systems such as rice paddies, for which water-saving strategies need to be developed. Here we report on the application of an in situ, automatic sampling system for high-resolution data on stable isotopes of water (18O and 2H). We investigate multiple rice-based cropping systems consisting of wet rice, dry rice and maize, with a single, but distributed analytical system on a sub-hourly basis. Results show that under dry conditions, there is a clear and distinguishable crop effect on isotopic composition in groundwater. The least evaporative affected groundwater source is that of maize, followed by both rice varieties. Groundwater is primarily a mixture of irrigation and rainwater, where the main driver is irrigation water during the dry season and rainwater during the wet season. Stable isotopes of groundwater under dry season maize react rapidly on irrigation, indicating preferential flow processes via cracks and deep roots. The groundwater during the dry season under wet and dry rice fields is dominated at the beginning of the growing season mainly by the input of rainwater; later, the groundwater is more and more replenished by irrigation water. Overall, based on our data, we estimate significantly higher evaporation (63–77%) during the dry season as compared to the wet season (27–36%). We also find, for the first time, significant sub-daily isotopic variation in groundwater and surface ponded water, with an isotopic enrichment during the daytime. High correlations with relative humidity and temperature, explain part of this variability. Furthermore, the day-night isotopic difference in surface water is driven by the temperature and relative humidity; however, in groundwater, it is neither driven by these factors.


2009 ◽  
Vol 474 (1-2) ◽  
pp. 271-284 ◽  
Author(s):  
L. Tosi ◽  
P. Teatini ◽  
L. Carbognin ◽  
G. Brancolini

Sign in / Sign up

Export Citation Format

Share Document