An experimental approach to efficiency calibration for gamma-ray spectrometric analysis of large air particulate filters

2013 ◽  
Vol 85 ◽  
pp. 53-58 ◽  
Author(s):  
Elio Tomarchio
1963 ◽  
Vol 03 (02) ◽  
pp. 175-182 ◽  
Author(s):  
Bo Bergman ◽  
Rune Söremark

SummaryBy means of neutron activation and gamma-ray spectrometry the concentrations in the human mandibular articular disc of the following elements have been determined: Na, Mn, Cu, Zn, Rb, Sr, Cd, W, and Au. The discs were obtained at necropsy from seven men and nine women, ranging in age from 56 to 71 years.The activation was carried out in a thermal neutron flux of about 1.7 XlO12 neutrons × cm−2 × sec.−1 for about 20 hours. A chemical group separationwas performed before the gamma-ray spectrometry. Quantitative data based on the dry weight of the cartilage samples were obtained by comparing the photo-peak area of the identified elements with those of appropriate standards.


Author(s):  
Jiří Zimák

The objective of this study was to assess the amount of natural radionuclides in fresh parent rocks and their effect on natural radioactivity of soils developed from them. Forty-five fresh rocks consisting mainly of granitoids, syenitoids, acid to basic metavolcanites, mica schists, gneisses, quartzites, serpentinites, sandstones, graywackes, and limestones and their corresponding overlying soils were sampled for laboratory gamma-ray spectrometric analysis. Contents of potassium, uranium and thorium were converted to mass activity of 226Ra equivalent (am) and terrestrial gamma radiation dose rate (D). Data are tabled and discussed. The highest am values occured in syenitoids (386–441 Bq·kg-1) followed by granitoids, mica schists, greywackes and gneisses, whereas the lowest am values were found in quartzose sandstones (15–36 Bq·kg-1) followed by limestones (less than 15 Bq·kg-1) and serpentinites (less than 6 Bq·kg-1). The natural radioactivity of soils is usually slightly lower than that of parent rocks due to the lower content of potassium, uranium and thorium in soils. This is typical for granitoids, syenitoids and rocks of similar mineralogical composition. In soils developed on granitoids and syenitoids were found increased concentrations of all three elements in the grain size fraction below 0.063 mm. Soils developed on rocks with low natural radioactivity (such as limestones and serpentinites) tend to have significantly higher natural radioactivity than their parent rocks. This may complicate the interpretation of data obtained by airborne gamma-ray spectrometry.


2020 ◽  
Vol 190 (3) ◽  
pp. 324-330
Author(s):  
C K Wanyama ◽  
F W Masinde ◽  
J W Makokha ◽  
S M Matsitsi

Abstract Radiological hazards associated with naturally occurring radionuclides in materials from Rosterman gold mine were assessed by analysis of 30 samples. The gamma-ray spectrometric analysis of tailing samples reported an average activity concentration of 263 ± 13, 123 ± 6 and 84 ± 4 Bq kg−1 for 40K, 232Th and 226Ra, respectively. The average absorbed dose rate was 124 ± 6 nGy h−1, while the annual effective dose of 0.4 ± 0.02 mSv y−1 for indoor and 0.3 ± 0.01 mSv y−1 for outdoor were reported. The mean and range of radiological parameters (external and radium equivalent) calculated from the tailing samples were within the permissible limits and hence mining of gold at Rosterman has no significant radiological health implication on the miners and the surrounding population.


2000 ◽  
Vol 53 (1-2) ◽  
pp. 237-241 ◽  
Author(s):  
D. Glavič-Cindro ◽  
M. Korun ◽  
B. Vodenik

Sign in / Sign up

Export Citation Format

Share Document