thermal neutron flux
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 28)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Guntram Pausch ◽  
Achim Kreuels ◽  
Falko Scherwinski ◽  
Yong Kong ◽  
Mathias Küster ◽  
...  

<p>Searching digitized detector signals for piled-up delayed components with distinct energy and delay time signatures is a smart method to provide common NaI(Tl) detectors with additional neutron detection capabilities at no extra cost. This technique nicely complements the idea of neutron detection by analyzing events with high energy depositions above the range of common gamma-ray energies. In combination, both approaches can provide half of the neutron sensitivity offered by a commercial <sup>6</sup>Li co-doped NaI(Tl) (NaIL™) scintillator of the same size, at the price of higher and load-dependent background contributions. Delayed-coincidence techniques are most suitable for neutron monitoring or long-term measurements, where the statistics of the acquired delay-time distributions allows separate fitting of the effect and background contributions. In this case, the thermal neutron flux can be quantified in parallel to gamma-ray spectroscopy at overall detector loads exceeding 10 kcps.</p>


2021 ◽  
Author(s):  
Guntram Pausch ◽  
Achim Kreuels ◽  
Falko Scherwinski ◽  
Yong Kong ◽  
Mathias Küster ◽  
...  

<p>Searching digitized detector signals for piled-up delayed components with distinct energy and delay time signatures is a smart method to provide common NaI(Tl) detectors with additional neutron detection capabilities at no extra cost. This technique nicely complements the idea of neutron detection by analyzing events with high energy depositions above the range of common gamma-ray energies. In combination, both approaches can provide half of the neutron sensitivity offered by a commercial <sup>6</sup>Li co-doped NaI(Tl) (NaIL™) scintillator of the same size, at the price of higher and load-dependent background contributions. Delayed-coincidence techniques are most suitable for neutron monitoring or long-term measurements, where the statistics of the acquired delay-time distributions allows separate fitting of the effect and background contributions. In this case, the thermal neutron flux can be quantified in parallel to gamma-ray spectroscopy at overall detector loads exceeding 10 kcps.</p>


2021 ◽  
Vol 10 (1) ◽  
pp. 11-20
Author(s):  
Tho Nguyen Thi ◽  
Anh Tran Tuan ◽  
Cuong Trinh Van ◽  
Doanh Ho Van ◽  
Duong Tran Quoc ◽  
...  

The accuracy of elements concentration determination using the k0-standardization method directly depends on irradiation and measurement parameters including Non-1/E epithermal neutron flux distribution shape α (ϕ epi ≈1/E1+α ) , thermal-to-epithermal neutron flux ratio f, efficiency ε, peak area… In the case of the irradiation position at the rotary rack of the Dalat Nuclear Research Reactor (DNRR), the difference of thermal neutron flux between the bottom (3.54x1012 n.cm-2.s-1) and the top (1.93x1012 n.cm-2.s-1) of the 15 cm aluminum container is up to 45%. Therefore, it is necessary to accurately determine above-mentioned parameters in the sample irradiation position. The present paper deals with the determination of the distribution of thermal neutron flux along the sample irradiation container by using 0.1% Au–Al wire activation technique. The thermal neutron flux was then used to calculate the concentration of elements in the Standard Reference Material 2711a and SMELS type III using k0-INAA method at different positions in the container. The obtained results with the neutron flux correction were found to be in good agreement with the certified values. In conclusion, the proposed technique can be applied for activation analyses without sandwiching flux monitors between samples during irradiations.


Author(s):  
Safwan Shalbi ◽  
Norazlianie Sazali ◽  
Wan Norharyati Wan Salleh

The thermal column at the TRIGA PUSPATI (RTP) research reactor can produce thermal neutron. However, the optimization on the thermal neutron flux produced should be performed to gain a sufficient thermal neutron for boron neutron capture therapy purpose. Thus, the objective of this review is to optimize the thermal neutron flux by designing the collimator with different materials at the thermal column. In order to fulfil the requirement, set by the IAEA standard, the study of Boron Neutron Capture Therapy (BNCT) around the world was being reviewed to study the suitable measurement, material, design, and modification for BNCT at the thermal column of TRIGA MARK-II, Malaysia. Initially, the BNCT mechanisms and history was review. Then, this paper review on the design and modifications for BNCT purpose around the world. Based on this review, suitable material and design can be used for the BNCT in Malaysia. Moreover, this paper also reviews the current status of BNCT at the RTP with the measurement of the thermal neutron flux was conducted along the thermal column at 250 kW. The thermal column of RTP was divided into 3 phases (Phase 1, Phase 2 and Phase 3) so that an accurate measurement can be obtained by using gold foil activation method. This value was used as a benchmark for the neutron flux produced from the thermal column. The reviewed demonstrated that the final thermal neutron flux produced was significantly for BNCT purpose.


2020 ◽  
Vol 5 (3) ◽  
pp. 239-248
Author(s):  
Tukiran Surbakti ◽  
Surian Pinem ◽  
Lily Suparlina

BATAN has three aging research reactors, so it is necessary to design a new, more modern MTR type reactor using high-density, low enrichment uranium molybdenum fuel. The thermal neutron flux at the irradiation position is an important concern in the design of research reactors. This analysis is performed using standard computer codes WIMSD-5B and Batan-FUEL. The purpose of this study is to analyze the effect of the core configuration with safety control rods and neutronic parameters using the diffusion method calculation. The reactor core consists of 16 fuel elements and four control rods placed in the 5 x 5 position of the grid plate and is loaded the reflector elements outside the core. The cycle length is also a concern, not less than 20 days, and the reactor can be operated safely with a power of 50 MW. The calculation results show that for the highest fuel loading, which is 450 grams of U7Mo/Al fuel with D2O as a reflector, it will provide the lowest thermal neutron flux at the center of the core irradiation position, namely 1.0 x1015 n/cm2s. The core fuel cycle length will be up to 39 days, meeting the expected acceptance and safety criteria.


2020 ◽  
Vol 137 ◽  
pp. 106358 ◽  
Author(s):  
Ryo Ogawara ◽  
Tamon Kusumoto ◽  
Teruaki Konishi ◽  
Tsuyoshi Hamano ◽  
Satoshi Kodaira

2020 ◽  
Vol 108 (3) ◽  
pp. 207-215 ◽  
Author(s):  
Mohamed A. Gizawy ◽  
Nader M. A. Mohamed ◽  
Mohamed I. Aydia ◽  
Mohamed A. Soliman ◽  
Hesham A. Shamsel-Din

AbstractScandium-47 is one of the most useful radioisotopes which is gaining great importance in cancer theranostics applications due to its favorable nuclear and chemical properties. MCNPX2.7.0 code was used to simulate the neutron activation of natural calcium target positioned at a thermal neutron flux of 1.8 × 1014 n cm−2 s−1 in the Egypt Second Research Reactor (ETRR-2). The burn card was used to calculate 47Ca and 47Sc radioactivities during 3 days irradiation and 20 days post-irradiation. The undesirable impurities generated during this period were also calculated. The obtained calculations were found to be in agreement with the experimental measurements. The distribution coefficient value (Kd) of 47Sc(III) as well as 47Ca(II) ions was determined using the commercially available ion-exchanger Chelex 100 in HNO3 and/or HCl media. Radiochemical separation of 47Sc(III) from 47Ca(II) was studied using HNO3 and HCl solutions and the results showed that HNO3 is a better medium than HCl for complete retention and recovery of 47Sc(III), where the recovery yields were 85 ± 1.2 and 95 ± 0.87 % using 1 M HCl and 1 M HNO3 solutions, respectively. The recovery yield obtained in our work was higher than in the reported procedures. Radionuclidic, radiochemical and chemical purities were investigated to ensure the suitability of 47Sc(III) for nuclear medicine applications.


2020 ◽  
Author(s):  
Valentina Antonova ◽  
Sergey Kryukov ◽  
Vadim Lutsenko ◽  
Andrey Malimbaev

&lt;p&gt;Studies of variations in the intensity of thermal (epithermal) neutrons at the high-mountain station of cosmic rays near the fracture of the earth's crust (3340 m above sea level, Northern Tien- Shan) showed the promising of using them for the diagnosis and forecast of earthquakes in seismically active regions. A method is proposed for distinguishing features of changes in the intensity of thermal neutrons of lithospheric origin against the background of variations caused by solar and atmospheric disturbance sources. However, a necessary condition for this is the synchronous registration of high-energy neutrons of galactic origin.&lt;/p&gt;&lt;p&gt;It is known that neutrons in the Earth&amp;#8217;s atmosphere arise mainly as a result of the interaction of primary cosmic radiation with the nuclei of air atoms. Statistical analysis of neutron measurements during effective solar events (coronal mass ejections), changes of atmospheric pressure confirmed the genetic relationship of thermal neutrons near the Earth's surface with high-energy neutrons of galactic origin and the similarity of the spectral composition of their variations. The difference is observed only in the range (2&amp;#183;10&lt;sup&gt;-7&lt;/sup&gt;&amp;#247;2&amp;#183;10&lt;sup&gt;-6&lt;/sup&gt;)Hz. Variations with the period of 29.5 days (synodic lunar month), due to the gravitational influence of the moon, are present throughout the 12-year period of research of thermal neutrons. The amplitude and its changes were determined by the method of complex demodulation. The periodicity of 29.5 days is absent in the spectrum of high-energy neutrons variations.&lt;/p&gt;&lt;p&gt;&amp;#160;Analysis of experimental data during of seismic activity showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons. The cause of this phenomenon is the additional thermal neutron flux of the lithospheric origin, which appears under these conditions. Simple statistical processing of measured parameters makes it possible to exclude variations of interplanetary and atmospheric origin in the intensity of thermal neutrons and to isolate changes caused by seismic processes.&lt;/p&gt;&lt;p&gt;&amp;#160;We used this method for analysis of thermal neutrons intensity during earthquakes with intensity &amp;#8805; 3b in the vicinity of Almaty which took place in 2007-2018. The catalog includes 30 events. The increase of thermal neutrons flux was observed for ~ 60% of events. However, before the earthquake the increase of thermal neutron flux is only observed for ~ 25-30% of events. The amplitude of the additional thermal neutron flux of the lithospheric origin is equal to 5-7% of the background level. Sometimes it reaches values of 10-12%.&lt;/p&gt;&lt;p&gt;The analysis of our catalog of earthquakes in the vicinity of Almaty also showed that 70% of these events occurred during the full moon or new moon (+/- 2 days).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document