Iterative Monte Carlo procedure for quantitative X-ray fluorescence analysis of copper alloys with a covering layer

2020 ◽  
Vol 167 ◽  
pp. 108294
Author(s):  
T. Trojek
Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7892
Author(s):  
Servando Chinchón-Payá ◽  
Julio E. Torres Martín ◽  
Antonio Silva Toledo ◽  
Javier Sánchez Montero

A correct assessment of the pathologies that can affect a reinforced concrete structure is required in order to define the repair procedure. This work addresses the challenge of quantifying chlorides and sulphates directly on the surface of concrete. The quantification was carried out by means of X-ray fluorescence analysis on the surface of concrete specimens at different points with portable equipment. Concrete prisms were made with different amounts of NaCl and Na2SO4. To avoid the influence of coarse aggregate, a qualitative estimate of the amount of coarse aggregate analyzed has been made, although the results show that there is no significant influence. Monte Carlo simulations were carried out in order to establish the necessary number of random analyses of the mean value to be within an acceptable range of error. In the case of quantifying sulphates, it is necessary to carry out six random analyses on the surface, and eight measurements in the case of quantifying chlorides; in this way, it is ensured that errors are below 10% in 95% of the cases. The results of the study highlight that a portable XRF device can be used in situ to obtain concentrations of chlorides and sulphates of a concrete surface with good accuracy. There is no need to take samples and bring them to a laboratory, allowing lower overall costs in inspection and reparation works.


2011 ◽  
Vol 40 (2) ◽  
pp. 88-95 ◽  
Author(s):  
Mateusz Czyzycki ◽  
Dariusz Wegrzynek ◽  
Pawel Wrobel ◽  
Marek Lankosz

Author(s):  
Brecht Laforce ◽  
Géraldine Fiers ◽  
Hans Vandendriessche ◽  
Philippe Crombé ◽  
Veerle Cnudde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document