energy dispersive
Recently Published Documents


TOTAL DOCUMENTS

4208
(FIVE YEARS 520)

H-INDEX

62
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Anita Yadav ◽  
Neerja Kapoor ◽  
Amin Arif ◽  
SANDEEP K MALHOTRA

Abstract Energy Dispersive X-Ray Microanalysis (EDXMA) has been used as the non-invasive technique on Indian helminthes to explore the role of nematode parasites as bioindicators in the marine ecosystem of Central West coast of India for the first time. The investigation incorporates assertions on the possible benefit of such technology to elucidate bioremediating prospects that could be helpful to establish helminth parasites as a tool representing Bioindicators. The accumulation of Sulphur and Iron were analysed from a raphidascaridoid roundworm, Rostellascaris spinicaudatum (Malhotra and Anas) parasitizing marine catfish, Arius maculatus from the Central west coast of India at Goa. Quantitatively, the cuticle on oral armature comprised as much as ten times more Sulphur than iron content in the roundworm under study. However, only Carbon and Oxygen were detected over caudal papillae, where no metals or other elements were recorded.


2022 ◽  
Vol 6 (1) ◽  
pp. 005-008
Author(s):  
Lombard Charles M

Pseudofungus structures in lymph node tissues have been reported on multiple occasions. Despite a variety of investigative tests including histochemical special stains and energy dispersive spectral analysis, the underlying nature and origin of these pseudofungus structures has never been clearly defined. The most common hypothesis suggests that they represent collagen fibers that become coated with iron and calcium. Herein, evidence is given that the pseudofungus structures identified in the lymph node tissues represent fragments of polyurethane catheters. The evidence includes both a comparison of these pseudofungus structures to fragments of polyurethane well documented in the literature and a comparison of polyurethane catheter scrapings to the pseudofungus structures identified in the literature. In both of these comparisons, the morphology of the polyurethane fragments are identical to the pseudofungus structures. This is the first definitive report identifying polyurethane catheter fragments as representing the true nature and etiology of pseudofungus structures in lymph node tissues.


2021 ◽  
pp. 1-7
Author(s):  
Vladimir Zaichick ◽  

Thyroid adenomas (TA) are benign tumors, but there is a 20% possibility of malignant transformation. The distinguishing between the TA and thyroid cancer (TC) is tricky, therefore new TA biomarkers are needed. Furthermore, the role of trace elements (TE) in etiology and pathogenesis of TA is unclear. The aim of this exploratory study was to examine the content of bromine (Br), cooper (Cu), iron (Fe), rubidium (Rb), strontium (Sr), and zinc (Zn) in the normal and in adenomatous thyroid. Thyroid tissue levels of six TE were prospectively evaluated in 19 patients with TA and 105 healthy inhabitants. Measurements were performed using 109Cd radionuclide-induced energy-dispersive X-ray fluorescent analysis Tissue samples were divided into two portions. One was used for morphological study while the other was intended for TE analysis. It was found that contents of Br and Cu were significantly higher (25.8 and 4.16 times, respectively) and content of Sr were significantly lower (39%) in adenomatous thyroid in comparison with normal level. There are considerable changes in TE contents in the adenomatous thyroid.


Author(s):  
Ольга Александровна Голованова

Sr -замещенный трикальцийфосфат был получен методом осаждения из водных растворов. Синтетические твердые фазы исследовали с помощью рентгеннофазового анализа, ИК-Фурье спектроскопии, сканирующей электронной микроскопии, энергодисперсионного анализа. Надосадочная жидкость была исследована на наличие ионов Ca и PO для вычисления Са/Р соотношения. Выявлено, что ионы стронция входят в состав трикальцийфосфата, однако не изменяют его фазовый состав. Добавление ионов стронция в исходный раствор способствует уменьшению размеров кристаллитов и увеличению их пористости. Данные по энергодисперсионному анализу подтвердили, что ионы стронция входят в состав образцов ТКФ. Но при увеличении их концентрации, полного замещения ионов кальция на ионы стронция в структуре ТКФ не происходит. При изучении биорезорбируемости полученных образцов с помощью прямой потенциометрии установлено, что образцы, содержащие ионы стронция в своем составе, имеют меньшее значение скорости резорбции. При этом, наибольшие значения скорости растворения фиксируются в кислых средах. Sr -substituted tricalcium phosphate was obtained by precipitation from aqueous solutions. Synthetic solid phases were investigated using X-ray phase analysis, IR spectroscopy, scanning electron microscopy, energy dispersive analysis. The supernatant was examined for the presence of Ca and PO4 ions to calculate the Ca/P ratio. It was revealed that strontium ions are part of tricalcium phosphate, but do not change its phase composition. The addition of strontium ions to the initial solution contributes to a decrease in the size of crystallites and an increase in their porosity. When studying the bioresorbability of the obtained samples using direct potentiometry, it was found that the samples containing strontium ions in their composition have a lower value of the rate of resorption. Energy dispersive analysis data confirmed that strontium ions are included in the composition of TCP samples. But with an increase in their concentration, complete replacement of calcium ions with strontium ions in the TCP structure does not occur. At the same time, the highest values of the dissolution rate are recorded in acidic media.


2021 ◽  
Vol 22 (24) ◽  
pp. 13665
Author(s):  
Abbas Amini ◽  
Azadeh Fallah ◽  
Ahmad Sedaghat ◽  
Ahmad Gholami ◽  
Chun Cheng ◽  
...  

Natural phosphate (NP) and synthetic fluorapatite phosphate (SFAP) were proposed as stable, inexpensive, readily available and recyclable catalysts for the condensation of 1,2-diamines with 1,2-dicarbonyls in methanol to afford quinoxaline at room temperature. NP provided as high as 92–99% yield for quinoxalines in short reaction times (i.e., 1–45 min), while SFAP created quinoxalines with 87–97% yield in 60–120 min. From the chemical analyses, X-ray fluoresecency, X-ray diffraction, energy dispersive X-ray and Fourier-transform infrared spectroscopy methods, two main phases (CaO, P2O5) appeared in NP together with other low content phases (SiO2, Fe2O3). Compared to other phases, apatite (CaO and P2O5 as Ca10(PO4)6) played a major role in the catalytic activity of NP. SFAP with similar Ca/P atomic ratio showed a relatively lower catalytic activity than NP for the condensation of 1,2-diamine with 1,2-dicarbonyl in methanol at ambient temperature. To investigate the recyclability of catalysts, the surface properties of NP and 6-recycled NP were investigated using scanning electron microscopy, energy dispersive X-ray and Brunauer–Emmett–Teller and Barrett–Joyner–Halenda methods. Some differences were observed in NP and 6-recycled NP’s particle size, surface area, the volume and size of pores, and the content of elements; nevertheless, the use–reuse process did not noticeably change the catalytic property of NP.


Author(s):  
Yulianto Ade Prasetya ◽  
Khoirun Nisyak ◽  
A'yunil Hisbiyah

Pseudomonas aeruginosa is a Gram-negative bacterium that often causes nosocomial infection because of its ability to produce biofilms so that it is resistant to various antibiotics. This research aims to determine the activity of zinc oxide-silver nanocomposites (ZnO-Ag) with clove oil against P. aerugoinosa bacteria. ZnO-Ag nanocomposites were made using the Green One Pot Synthesis technique using a sonicator and microwave instruments. The nanocomposites formed were characterized by X-Ray Diffraction (XRD) to determine crystallinity and particle size and Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX) to determine morphology and elements. The antibacterial activity and antibiofilm tests were carried out using the well diffusion and the microplate techniques, respectively. The resulted ZnO-Ag nanocomposite formed had a size of 19.66 nm, where Ag (47%) was of round shape, while Zn (35%) and O (18%) were fibrous. The ZnO-Ag had an inhibition zone of 14.9 mm against P. aeruginosa and was able to prevent the attachment of the bacterial biofilm for 48 hours with 76,59% inhibition percentage. Pseudomonas aeruginosa merupakan bakteri Gram negatif yang sering menyebabkan infeksi noskomial karena kemampuannya menghasilkan biofilm sehingga resisten terhadap berbagai antibiotik. Penelitian ini bertujuan untuk mengetahui aktivitas nanokomposit seng oksida-perak (ZnO-Ag) dengan minyak cengkeh terhadap P. aeruginosa. Nanokomposit ZnO-Ag dibuat dengan teknik Green One Pot Synthesis menggunakan instrumen sonikator dan gelombang mikro. Nanokomposit yang terbentuk dikarakterisasi menggunakan X-Ray Diffraction (XRD) untuk mengetahui kristalinitas dan ukuran partikel, Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX) untuk mengetahui morfologi dan unsur yang terbentuk. Uji aktivitas antibakteri dilakukan dengan metode difusi sumuran dan uji antibiofilm dilakukan dengan teknik microplate. Hasil nanokomposit ZnO-Ag yang terbentuk memiliki ukuran sebesar 19,66 nm, dimana Ag (47%) berbentuk bulat sedangkan Zn (35%) dan O (18%) berbentuk fiber. Nanokomposit ZnO-Ag memunculkan zona hambat 14,9 mm terhadap P. aeruginosa dan mampu mencegah penempelan biofilm yang dihasilkan bakteri tersebut selama 48 jam dengan penghambatan 76,59%.


2021 ◽  
Vol 11 (23) ◽  
pp. 11441
Author(s):  
Maria Letizia Amadori ◽  
Valeria Mengacci ◽  
Manuela Vagnini ◽  
Antonella Casoli ◽  
Parviz Holakooei ◽  
...  

Pagán is an ancient city located in Myanmar that is renowned for the remains of about 4000 pagodas, stupas, temples and monasteries dating from the 11th to 13th centuries. Due to a magnitude 6.8 earthquake in 2016, more than 300 ancient buildings were seriously damaged. As a part of the post-earthquake emergency program, a diagnostic pilot project was carried out on Me-taw-ya temple wall paintings to acquire further information on the materials and on their state of conservation. This article presents our attempts at characterising the painting materials at Me-taw-ya temple using non-invasive portable energy dispersive X-ray fluorescence (ED-XRF), portable Raman spectroscopy and micro-invasive attenuated total reflectance—Fourier transform infrared spectroscopy (ATR-FTIR), micro-Raman spectroscopy (µ-Raman), gas chromatography-mass spectrometry (GC-MS), polarized light microscopy (PLM) and environmental scanning electron microscope—X-ray energy dispersive system (ESEM-EDS) investigations with the aim of identifying the composition of organic binders and pigments. The presence of a proteinaceous glue mixed with the lime-based plaster was ascertained and identified by GC-MS. In addition, this technique confirmed the occurrence of plant-derived gums as binders pointing to the a secco technique. Fe-based compounds, vermillion, carbon black and As-compounds were identified to have been incorporated in the palette of the murals.


Sign in / Sign up

Export Citation Format

Share Document