Synergetic combination of 1D-2D g-C3N4 heterojunction nanophotocatalyst for hydrogen production via water splitting under visible light irradiation

2018 ◽  
Vol 127 ◽  
pp. 433-443 ◽  
Author(s):  
Saeed Mahzoon ◽  
Seyed Mostafa Nowee ◽  
Mohammad Haghighi
2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


2015 ◽  
Vol 8 (5) ◽  
pp. 1443-1449 ◽  
Author(s):  
Bin Liu ◽  
Xu-Bing Li ◽  
Yu-Ji Gao ◽  
Zhi-Jun Li ◽  
Qing-Yuan Meng ◽  
...  

We describe a simple, efficient and stable mercaptoacetic acid-engineered CdSe quantum dot photocathode for hydrogen generation by water-splitting from neutral water.


Nanoscale ◽  
2015 ◽  
Vol 7 (18) ◽  
pp. 8187-8208 ◽  
Author(s):  
Mohammad Reza Gholipour ◽  
Cao-Thang Dinh ◽  
François Béland ◽  
Trong-On Do

We review recent advanced heterojunction semiconductors with various morphologies and chemical compositions, which have great potential for hydrogen production under visible light irradiation.


2015 ◽  
Vol 73 (7) ◽  
pp. 1667-1672 ◽  
Author(s):  
Yi-Lin Chen ◽  
Shang-Lien Lo ◽  
Hsiang-Ling Chang ◽  
Hsiao-Mei Yeh ◽  
Liping Sun ◽  
...  

An attractive and effective method for converting solar energy into clean and renewable hydrogen energy is photocatalytic water splitting over semiconductors. The study aimed at utilizing organic sacrificial agents in water, modeled by formic acid, in combination with visible light driven photocatalysts to produce hydrogen with high efficiencies. The photocatalytic hydrogen production of cadmium sulfide (CdS)/titanate nanotubes (TNTs) binary hybrid with specific CdS content was investigated. After visible light irradiation for 3 h, the hydrogen production rate of 25 wt% CdS/TNT achieved 179.35 μmol·h−1. Thanks to the two-step process, CdS/TNTs-WO3 ternary hybrid can better promote the efficiency of water splitting compared with CdS/TNTs binary hybrid. The hydrogen production of 25 wt% CdS/TNTs-WO3 achieved 212.68 μmol·h−1, under the same condition. Coating of platinum metal onto the WO3 could further promote the reaction. Results showed that 0.2 g 0.1 wt% Pt/WO3 + 0.2 g 25 wt% CdS/TNTs had the best hydrogen production rate of 428.43 μmol·h−1. The resultant materials were well characterized by high-resolution transmission electron microscope, X-ray diffraction, scanning electron microscopy, and UV-Vis spectra.


Sign in / Sign up

Export Citation Format

Share Document