hydrogen energy
Recently Published Documents


TOTAL DOCUMENTS

2313
(FIVE YEARS 650)

H-INDEX

54
(FIVE YEARS 16)

10.1142/q0342 ◽  
2022 ◽  
Author(s):  
Qingsheng Gao ◽  
Lichun Yang

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 499
Author(s):  
Xuyan Song ◽  
Yunlu He ◽  
Bo Wang ◽  
Sanwen Peng ◽  
Lin Tong ◽  
...  

The development of low platinum loading hydrogen evolution reaction (HER) catalysts with high activity and stability is of great significance to the practical application of hydrogen energy. This paper reports a simple method to synthesize a highly efficient HER catalyst through coating a highly dispersed PtNi alloy on porous nitrogen-doped carbon (MNC) derived from the zeolite imidazolate skeleton. The catalyst is characterized and analyzed by physical characterization methods, such as XRD, SEM, TEM, BET, XPS, and LSV, EIS, it, v-t, etc. The optimized sample exhibits an overpotential of only 26 mV at a current density of 10 mA cm−2, outperforming commercial 20 wt% Pt/C (33 mV). The synthesized catalyst shows a relatively fast HER kinetics as evidenced by the small Tafel slope of 21.5 mV dec−1 due to the small charge transfer resistance, the alloying effect between Pt and Ni, and the interaction between PtNi alloy and carrier.


2022 ◽  
Vol 14 (2) ◽  
pp. 917
Author(s):  
Hyewon Yang ◽  
Young Jae Han ◽  
Jiwon Yu ◽  
Sumi Kim ◽  
Sugil Lee ◽  
...  

The purpose of this research was to derive promising technologies for the transport of hydrogen fuel cells, thereby supporting the development of research and development policy and presenting directions for investment. We also provide researchers with information about technology that will lead the technology field in the future. Hydrogen energy, as the core of carbon neutral and green energy, is a major issue in changing the future industrial structure and national competitive advantage. In this study, we derived promising technology at the core of future hydrogen fuel cell transportation using the published US patent and paper databases (DB). We first performed text mining and data preprocessing and then discovered promising technologies through generative topographic mapping analysis. We analyzed both the patent DB and treatise DB in parallel and compared the results. As a result, two promising technologies were derived from the patent DB analysis, and five were derived from the paper DB analysis.


2022 ◽  
Vol 12 (2) ◽  
pp. 781
Author(s):  
Talal Yusaf ◽  
Mohamd Laimon ◽  
Waleed Alrefae ◽  
Kumaran Kadirgama ◽  
Hayder Al Dhahad ◽  
...  

Adoption of hydrogen energy as an alternative to fossil fuels could be a major step towards decarbonising and fulfilling the needs of the energy sector. Hydrogen can be an ideal alternative for many fields compared with other alternatives. However, there are many potential environmental challenges that are not limited to production and distribution systems, but they also focus on how hydrogen is used through fuel cells and combustion pathways. The use of hydrogen has received little attention in research and policy, which may explain the widely claimed belief that nothing but water is released as a by-product when hydrogen energy is used. We adopt systems thinking and system dynamics approaches to construct a conceptual model for hydrogen energy, with a special focus on the pathways of hydrogen use, to assess the potential unintended consequences, and possible interventions; to highlight the possible growth of hydrogen energy by 2050. The results indicate that the combustion pathway may increase the risk of the adoption of hydrogen as a combustion fuel, as it produces NOx, which is a key air pollutant that causes environmental deterioration, which may limit the application of a combustion pathway if no intervention is made. The results indicate that the potential range of global hydrogen demand is rising, ranging from 73 to 158 Mt in 2030, 73 to 300 Mt in 2040, and 73 to 568 Mt in 2050, depending on the scenario presented.


2022 ◽  
Author(s):  
Yang Bai ◽  
Chao Li ◽  
Lunjie Liu ◽  
Yuichi Yamaguchi ◽  
Bahri Mounib ◽  
...  

The production of hydrogen from water via solar water splitting is a potential method to overcome the intermittency of the Sun’s energy by storing it as a chemical fuel. Inorganic semiconductors have been studied extensively as photocatalysts for overall water splitting, but polymer photocatalysts are also receiving growing attention. So far, most studies involving organic polymers report hydrogen production with sacrificial electron donors, which is unsuitable for large-scale hydrogen energy production. Here we show that a linear conjugated polymer photocatalyst can be used for overall water splitting to produce stoichiometric amounts of H2 and O2. We studied a range of different metal co-catalysts in conjunction with the linear polymer photocatalyst, the homopolymer of dibenzo[b,d]thiophene sulfone (P10). Photocatalytic activity was observed for palladium/iridium oxide-loaded P10, while other co-catalysts resulted in materials that showed no activity for overall water splitting. The reaction conditions were further optimized and the overall water splitting using the IrO2-loaded P10 was found to proceed steadily for an extended period (>60 hours) after the system stabilized. These results demonstrate that conjugated polymers can act as single component photocatalytic systems for overall water splitting when loaded with suitable co-catalysts, albeit currently with low activities. Significantly, though, organic polymers can be designed to absorb a large fraction of the visible spectrum, which can be challenging with inorganic catalysts. Transient spectroscopy shows that the IrO2 co-catalyst plays an important role in the generation of the charge separated state required for water splitting, with evidence for fast hole transfer to the co-catalyst. This solid-state approach should be transferable to other polymer photocatalysts, allowing this field to move away from sacrificial hydrogen production towards overall water splitting.


Sign in / Sign up

Export Citation Format

Share Document