Droplet dynamic characteristics on PEM fuel cell cathode gas diffusion layer with gradient pore size distribution

Author(s):  
Yulin Wang ◽  
Xiaodong Wang ◽  
Xiaoai Wang ◽  
Tao Liu ◽  
Tingting Zhu ◽  
...  
Author(s):  
Kui Jiao ◽  
Biao Zhou

Liquid water transport inside proton exchange membrane (PEM) fuel cells is one of the key challenges for water management in a PEM fuel cell. Investigation of the air-water flow patterns inside fuel cell gas flow channels with gas diffusion layer (GDL) would provide valuable information that could be used in fuel cell design and optimization. This paper presents an accelerated numerical investigation of air-water flow across a GDL with a serpentine channel on PEM fuel cell cathode by use of a commercial computational fluid dynamics software package FLUENT. Detailed flow patterns with air-water across the porous media were investigated and discussed.


2008 ◽  
Vol 1 (1) ◽  
pp. 618-630
Author(s):  
Zhuqian Zhang ◽  
Xia Wang ◽  
Jing Li ◽  
Zissimos P. Mourelatos ◽  
Li Jia

Author(s):  
Dario Maggiolo ◽  
Andrea Marion ◽  
Massimo Guarnieri

Several experiments have proved that water in liquid phase can be present at the anode of a PEM fuel cell due to vapor condensation resulting in mass transport losses. Nevertheless, it is not yet well understood where exactly water tends to cumulate and how the design of the gas channel (GC) and gas diffusion layer (GDL) could be improved to limit water cumulation. In the present work a three-dimensional lattice Boltzmann based model is implemented in order to simulate the water cumulation at the GC-GDL interface at the anode of a PEM fuel cell. The numerical model incorporates the H2-H2O mixture equation of state and spontaneously simulates phase separation phenomena. Different simulations are carried out varying pressure gradient, pore size and relative height of the GDL. Results reveal that, once saturation conditions are reached, water tends to cumulate in two main regions: the upper and side walls of the GC and the GC-GDL interface, resulting in a limitation of the reactant diffusion from the GC to the GDL. Interestingly, the cumulation of liquid water at the interface is found to diminish as the relative height of the GDL increases.


2014 ◽  
Vol 11 (6) ◽  
Author(s):  
Dario Maggiolo ◽  
Andrea Marion ◽  
Massimo Guarnieri

Several experiments have proved that water in liquid phase can be present at the anode of a PEM fuel cell due to vapor condensation resulting in mass transport losses. Nevertheless, it is not yet well understood where exactly water tends to cumulate and how the design of the gas channel (GC) and gas diffusion layer (GDL) could be improved to limit water cumulation. In the present work, a three-dimensional lattice Boltzmann based model is implemented in order to simulate the water cumulation at the GC–GDL interface at the anode of a PEM fuel cell. The numerical model incorporates the H2–H2O mixture equation of state and spontaneously simulates phase separation phenomena. Different simulations are carried out varying pressure gradient, pore size, and relative height of the GDL. Results reveal that, once saturation conditions are reached, water tends to cumulate in two main regions: the upper and side walls of the GC and the GC–GDL interface, resulting in a limitation of the reactant diffusion from the GC to the GDL. Interestingly, the cumulation of liquid water at the interface is found to diminish as the relative height of the GDL increases.


Sign in / Sign up

Export Citation Format

Share Document