FALCON- FArm Level CONtrol for wind turbines using multi-agent deep reinforcement learning

2022 ◽  
Vol 181 ◽  
pp. 445-456
Author(s):  
Venkata Ramakrishna Padullaparthi ◽  
Srinarayana Nagarathinam ◽  
Arunchandar Vasan ◽  
Vishnu Menon ◽  
Depak Sudarsanam
2021 ◽  
Author(s):  
Amjad Yousef Majid ◽  
Serge Saaybi ◽  
Tomas van Rietbergen ◽  
Vincent Francois-Lavet ◽  
R Venkatesha Prasad ◽  
...  

<div>Deep Reinforcement Learning (DRL) and Evolution Strategies (ESs) have surpassed human-level control in many sequential decision-making problems, yet many open challenges still exist.</div><div>To get insights into the strengths and weaknesses of DRL versus ESs, an analysis of their respective capabilities and limitations is provided. </div><div>After presenting their fundamental concepts and algorithms, a comparison is provided on key aspects such as scalability, exploration, adaptation to dynamic environments, and multi-agent learning. </div><div>Then, the benefits of hybrid algorithms that combine concepts from DRL and ESs are highlighted. </div><div>Finally, to have an indication about how they compare in real-world applications, a survey of the literature for the set of applications they support is provided.</div>


2021 ◽  
Author(s):  
Amjad Majid

<div>Deep Reinforcement Learning (DRL) has the potential to surpass human-level control in sequential decision-making problems. Evolution Strategies (ESs) have different characteristics than DRL, yet they are promoted as a scalable alternative. </div><div>To get insights into their strengths and weaknesses, in this paper, we put the two approaches side by side. After presenting the fundamental concepts and algorithms for each of the two approaches, they are compared from the perspectives of scalability, exploration, adaptation to dynamic environments, and multi-agent learning. Then, the paper discusses hybrid algorithms, combining aspects of both DRL and ESs, and how they attempt to capitalize on the benefits of both techniques. Lastly, both approaches are compared based on the set of applications they support, showing their potential for tackling real-world problems.</div><div>This paper aims to present an overview of how DRL and ESs can be used, either independently or in unison, to solve specific learning tasks. It is intended to guide researchers to select which method suits them best and provides a bird's eye view of the overall literature in the field. Further, we also provide application scenarios and open challenges. </div>


2021 ◽  
Author(s):  
Amjad Majid

<div>Deep Reinforcement Learning (DRL) has the potential to surpass human-level control in sequential decision-making problems. Evolution Strategies (ESs) have different characteristics than DRL, yet they are promoted as a scalable alternative. </div><div>To get insights into their strengths and weaknesses, in this paper, we put the two approaches side by side. After presenting the fundamental concepts and algorithms for each of the two approaches, they are compared from the perspectives of scalability, exploration, adaptation to dynamic environments, and multi-agent learning. Then, the paper discusses hybrid algorithms, combining aspects of both DRL and ESs, and how they attempt to capitalize on the benefits of both techniques. Lastly, both approaches are compared based on the set of applications they support, showing their potential for tackling real-world problems.</div><div>This paper aims to present an overview of how DRL and ESs can be used, either independently or in unison, to solve specific learning tasks. It is intended to guide researchers to select which method suits them best and provides a bird's eye view of the overall literature in the field. Further, we also provide application scenarios and open challenges. </div>


Author(s):  
Hao Jiang ◽  
Dianxi Shi ◽  
Chao Xue ◽  
Yajie Wang ◽  
Gongju Wang ◽  
...  

Author(s):  
Xiaoyu Zhu ◽  
Yueyi Luo ◽  
Anfeng Liu ◽  
Md Zakirul Alam Bhuiyan ◽  
Shaobo Zhang

2021 ◽  
Vol 11 (11) ◽  
pp. 4948
Author(s):  
Lorenzo Canese ◽  
Gian Carlo Cardarilli ◽  
Luca Di Di Nunzio ◽  
Rocco Fazzolari ◽  
Daniele Giardino ◽  
...  

In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods.


Sign in / Sign up

Export Citation Format

Share Document