A unified approach for global sensitivity analysis based on active subspace and Kriging

2022 ◽  
Vol 217 ◽  
pp. 108080
Author(s):  
Changcong Zhou ◽  
Zhuangke Shi ◽  
Sergei Kucherenko ◽  
Haodong Zhao
2019 ◽  
Author(s):  
Daniel Erdal ◽  
Olaf A. Cirpka

Abstract. Integrated hydrological modelling of domains with complex subsurface features requires many highly uncertain parameters. Performing a global uncertainty analysis using an ensemble of model runs can help bring clarity which of these parameters really influence system behavior, and for which high parameter uncertainty does not result in similarly high uncertainty of model predictions. However, already creating a sufficiently large ensemble of model simulation for the global sensitivity analysis can be challenging, as many combinations of model parameters can lead to unrealistic model behavior. In this work we use the method of active subspaces to perform a global sensitivity analysis. While building-up the ensemble, we use the already existing ensemble members to construct low-order meta-models based on the first two active subspace dimensions. The meta-models are used to pre-determine whether a random parameter combination in the stochastic sampling is likely to result in unrealistic behavior, so that such a parameter combination is excluded without running the computationally expensive full model. An important reason for choosing the active subspace method is that both the activity score of the global sensitivity analysis and the meta-models can easily be understood and visualized. We test the approach on a subsurface flow model including uncertain hydraulic parameter, uncertain boundary conditions, and uncertain geological structure. We show that sufficiently detailed active subspaces exist for most observations of interest. The pre-selection by the meta-model significantly reduces the number of full model runs that must be rejected due to unrealistic behavior. An essential but difficult part in active subspace sampling using complex models is approximating the gradient of the simulated observation with respect to all parameters. We show that this can effectively and meaningful be done with second-order polynomials.


2020 ◽  
Vol 34 (11) ◽  
pp. 1813-1830
Author(s):  
Daniel Erdal ◽  
Sinan Xiao ◽  
Wolfgang Nowak ◽  
Olaf A. Cirpka

Abstract Ensemble-based uncertainty quantification and global sensitivity analysis of environmental models requires generating large ensembles of parameter-sets. This can already be difficult when analyzing moderately complex models based on partial differential equations because many parameter combinations cause an implausible model behavior even though the individual parameters are within plausible ranges. In this work, we apply Gaussian Process Emulators (GPE) as surrogate models in a sampling scheme. In an active-training phase of the surrogate model, we target the behavioral boundary of the parameter space before sampling this behavioral part of the parameter space more evenly by passive sampling. Active learning increases the subsequent sampling efficiency, but its additional costs pay off only for a sufficiently large sample size. We exemplify our idea with a catchment-scale subsurface flow model with uncertain material properties, boundary conditions, and geometric descriptors of the geological structure. We then perform a global-sensitivity analysis of the resulting behavioral dataset using the active-subspace method, which requires approximating the local sensitivities of the target quantity with respect to all parameters at all sampled locations in parameter space. The Gaussian Process Emulator implicitly provides an analytical expression for this gradient, thus improving the accuracy of the active-subspace construction. When applying the GPE-based preselection, 70–90% of the samples were confirmed to be behavioral by running the full model, whereas only 0.5% of the samples were behavioral in standard Monte-Carlo sampling without preselection. The GPE method also provided local sensitivities at minimal additional costs.


2019 ◽  
Vol 23 (9) ◽  
pp. 3787-3805 ◽  
Author(s):  
Daniel Erdal ◽  
Olaf A. Cirpka

Abstract. Integrated hydrological modeling of domains with complex subsurface features requires many highly uncertain parameters. Performing a global uncertainty analysis using an ensemble of model runs can help bring clarity as to which of these parameters really influence system behavior and for which high parameter uncertainty does not result in similarly high uncertainty of model predictions. However, already creating a sufficiently large ensemble of model simulation for the global sensitivity analysis can be challenging, as many combinations of model parameters can lead to unrealistic model behavior. In this work we use the method of active subspaces to perform a global sensitivity analysis. While building up the ensemble, we use the already-existing ensemble members to construct low-order meta-models based on the first two active-subspace dimensions. The meta-models are used to pre-determine whether a random parameter combination in the stochastic sampling is likely to result in unrealistic behavior so that such a parameter combination is excluded without running the computationally expensive full model. An important reason for choosing the active-subspace method is that both the activity score of the global sensitivity analysis and the meta-models can easily be understood and visualized. We test the approach on a subsurface-flow model including uncertain hydraulic parameters, uncertain boundary conditions and uncertain geological structure. We show that sufficiently detailed active subspaces exist for most observations of interest. The pre-selection by the meta-model significantly reduces the number of full-model runs that must be rejected due to unrealistic behavior. An essential but difficult part in active-subspace sampling using complex models is approximating the gradient of the simulated observation with respect to all parameters. We show that this can effectively and meaningfully be done with second-order polynomials.


Sign in / Sign up

Export Citation Format

Share Document