A comparison of 18 winter seasons of in situ and passive microwave-derived snow water equivalent estimates in Western Canada

2003 ◽  
Vol 88 (3) ◽  
pp. 271-282 ◽  
Author(s):  
C Derksen ◽  
A Walker ◽  
B Goodison
2021 ◽  
Author(s):  
Colleen Mortimer ◽  
Lawrence Mudryk ◽  
Chris Derksen ◽  
Kari Luojus ◽  
Pinja Venalainen ◽  
...  

<p>The European Space Agency Snow CCI+ project provides global homogenized long time series of daily snow extent and snow water equivalent (SWE). The Snow CCI SWE product is built on the Finish Meteorological Institute's GlobSnow algorithm, which combines passive microwave data with in situ snow depth information to estimate SWE. The CCI SWE product improves upon previous versions of GlobSnow through targeted changes to the spatial resolution, ancillary data, and snow density parameterization.</p><p>Previous GlobSnow SWE products used a constant snow density of 0.24 kg m<sup>-3</sup> to convert snow depth to SWE. The CCI SWE product applies spatially and temporally varying density fields, derived by krigging in situ snow density information from historical snow transects to correct biases in estimated SWE. Grid spacing was improved from 25 km to 12.5 km by applying an enhanced spatial resolution microwave brightness temperature dataset. We assess step-wise how each of these targeted changes acts to improve or worsen the product by evaluating with snow transect measurements and comparing hemispheric snow mass and trend differences.</p><p>Together, when compared to GlobSnow v3, these changes improved RMSE by ~5 cm and correlation by ~0.1 against a suite of snow transect measurements from Canada, Finland, and Russia. Although the hemispheric snow mass anomalies of CCI SWE and GlobSnow v3 are similar, there are sizeable differences in the climatological SWE, most notably a one month delay in the timing of peak SWE and lower SWE during the accumulation season. These shifts were expected because the variable snow density is lower than the former fixed value of 0.24 kg m<sup>-3</sup> early in the snow season, but then increases over the course of the snow season. We also examine intermediate products to determine the relative improvements attributable solely to the increased spatial resolution versus changes due to the snow density parameterizations. Such systematic evaluations are critical to directing future product development.</p>


1993 ◽  
Vol 17 ◽  
pp. 307-311 ◽  
Author(s):  
A.E. Walker ◽  
B.E. Goodison

Snow-cover monitoring using passive microwave remote sensing methods has been shown to be seriously limited under melt conditions when the snowpack becomes wet. A wet snow indicator has been developed using DMSP SSM/I 37 GHz dual-polarization data for the open prairie region of western Canada. The indicator is used to identify areas of wet snow and discriminate them from areas of snow-free land. Validation and testing efforts have illustrated that the addition of the indicator to the current SSM/I snow water equivalent algorithm provides a more accurate representation of spatial snow coverage throughout the winter season for the open prairie region. The improved spatial and temporal information resulting from the use of the indicator enhances both climatological and hydrological analyses of snow-cover conditions using passive microwave data. Although the wet snow indicator has only been validated for the open prairie region of western Canada, it may also be applicable to other regions of similar terrain and vegetative characteristics. However, in areas of dense vegetation, such as the boreal forest, the performance of the indicator is poor due to the generally low 37 GHz polarization differences of the vegetation cover.


2020 ◽  
Author(s):  
Margot Flemming ◽  
Richard Kelly

<p>The spatial and temporal heterogeneity of seasonal snow and its impact on socio-economic and environmental functionality make accurate, real-time estimates of snow water equivalent (SWE) important for hydrological and climatological predictions. Remote sensing techniques facilitate a cost effective, temporally and spatiallyconsistent approach to SWE monitoring in areas where insitu measurements are notsufficient. Passive microwave remote sensing has been used to successfully estimate SWE globally by measuring the microwave attenuation from the Earth’s surface as a function of SWE. However, passive microwave derived SWE estimates at local scales are subject to large errors given the coarse spatial resolution of observations (~625 km<sup>2</sup>).Regression downscaling techniques can be implemented to increase the spatial resolution of gridded datasets with the use of related auxiliary datasets at a finer spatial resolution. These techniques have been successfully implemented to remote sensing datasets such as soil moisture estimates, however, limited work has applied such techniques to snow-related datasets.This study focuses on assessing the feasibility of using regression downscaling to increase the spatial resolution of the European Space Agency’s (ESA) Globsnow SWE product in the Red River basin, an agriculturally important region of the northern United States.</p><p>Prior to downscaling Globsnow SWE, three regression downscaling techniques (Multiple Linear Regression, Random Forest Regression and Geographically Weighted Regression) were assessed in an internal experiment using 1 km grid scale Snow Data Assimilation System (SNODAS) SWE estimates, developed by the National Weather Service’s National Operational Hydrological Remote Sensing Center (NOHRSC). SNODAS SWE estimates for 5-year period between 2013-2018 were linearly aggregated to a 25 km grid scale to match the Globsnow spatial resolution. Three regression downscaling techniques were implemented along with correlative datasets available at the 1 km grid scale to downscale the aggregated SNODAS data back to the original 1 km grid scale spatial resolution. When compared with the original SNODAS SWE estimates, the downscaled SWE estimates from the Random Forest Regression performed the best. Random Forest Regression Downscaling was then implemented on the original Globsnow SWE data for the same time period, as well as a corrected Globsnow SWE dataset. The downscaled SWE results from both the corrected and uncorrected Globsnow data were validated using the original SNODAS SWE estimates as well as in situ SWE measurements from a set of 40-45 (depending on the season) weather stations within the study region. Spatial and temporal error distributions were assessed through both validation datasets. The downscaled results from the corrected Globsnow dataset showed similar overall statistics to the original SNODAS SWE estimates, performing better than the downscaled results from the uncorrected Globsnow SWE dataset. The overall aim of this study is to assess the applicability of regression downscaling as a reliable and reproducible method for local scale SWE estimation in areas where finer resolution data such as SNODAS does not exist. Therefore, the goal is to reproduce the optimal regression downscaling procedure in an area other snow dominated regions across the globe using in situ snow transect data for validation.</p>


1993 ◽  
Vol 17 ◽  
pp. 307-311 ◽  
Author(s):  
A.E. Walker ◽  
B.E. Goodison

Snow-cover monitoring using passive microwave remote sensing methods has been shown to be seriously limited under melt conditions when the snowpack becomes wet. A wet snow indicator has been developed using DMSP SSM/I 37 GHz dual-polarization data for the open prairie region of western Canada. The indicator is used to identify areas of wet snow and discriminate them from areas of snow-free land. Validation and testing efforts have illustrated that the addition of the indicator to the current SSM/I snow water equivalent algorithm provides a more accurate representation of spatial snow coverage throughout the winter season for the open prairie region. The improved spatial and temporal information resulting from the use of the indicator enhances both climatological and hydrological analyses of snow-cover conditions using passive microwave data. Although the wet snow indicator has only been validated for the open prairie region of western Canada, it may also be applicable to other regions of similar terrain and vegetative characteristics. However, in areas of dense vegetation, such as the boreal forest, the performance of the indicator is poor due to the generally low 37 GHz polarization differences of the vegetation cover.


Sign in / Sign up

Export Citation Format

Share Document