red river basin
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 29)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 13 (24) ◽  
pp. 5122
Author(s):  
Massimo Menenti ◽  
Xin Li ◽  
Li Jia ◽  
Kun Yang ◽  
Francesca Pellicciotti ◽  
...  

This project explored the integrated use of satellite, ground observations and hydrological distributed models to support water resources assessment and monitoring in High Mountain Asia (HMA). Hydrological data products were generated taking advantage of the synergies of European and Chinese data assets and space-borne observation systems. Energy-budget-based glacier mass balance and hydrological models driven by satellite observations were developed. These models can be applied to describe glacier-melt contribution to river flow. Satellite hydrological data products were used for forcing, calibration, validation and data assimilation in distributed river basin models. A pilot study was carried out on the Red River basin. Multiple hydrological data products were generated using the data collected by Chinese satellites. A new Evapo-Transpiration (ET) dataset from 2000 to 2018 was generated, including plant transpiration, soil evaporation, rainfall interception loss, snow/ice sublimation and open water evaporation. Higher resolution data were used to characterize glaciers and their response to environmental forcing. These studies focused on the Parlung Zangbo Basin, where glacier facies were mapped with GaoFeng (GF), Sentinal-2/Multi-Spectral Imager (S2/MSI) and Landsat8/Operational Land Imager (L8/OLI) data. The geodetic mass balance was estimated between 2000 and 2017 with Zi-Yuan (ZY)-3 Stereo Images and the SRTM DEM. Surface velocity was studied with Landsat5/Thematic Mapper (L5/TM), L8/OLI and S2/MSI data over the period 2013–2019. An updated method was developed to improve the retrieval of glacier albedo by correcting glacier reflectance for anisotropy, and a new dataset on glacier albedo was generated for the period 2001–2020. A detailed glacier energy and mass balance model was developed with the support of field experiments at the Parlung No. 4 Glacier and the 24 K Glacier, both in the Tibetan Plateau. Besides meteorological measurements, the field experiments included glaciological and hydrological measurements. The energy balance model was formulated in terms of enthalpy for easier treatment of water phase transitions. The model was applied to assess the spatial variability in glacier melt. In the Parlung No. 4 Glacier, the accumulated glacier melt was between 1.5 and 2.5 m w.e. in the accumulation zone and between 4.5 and 6.0 m w.e. in the ablation zone, reaching 6.5 m w.e. at the terminus. The seasonality in the glacier mass balance was observed by combining intensive field campaigns with continuous automatic observations. The linkage of the glacier and snowpack mass balance with water resources in a river basin was analyzed in the Chiese (Italy) and Heihe (China) basins by developing and applying integrated hydrological models using satellite retrievals in multiple ways. The model FEST-WEB was calibrated using retrievals of Land Surface Temperature (LST) to map soil hydrological properties. A watershed model was developed by coupling ecohydrological and socioeconomic systems. Integrated modeling is supported by an updated and parallelized data assimilation system. The latter exploits retrievals of brightness temperature (Advanced Microwave Scanning Radiometer, AMSR), LST (Moderate Resolution Imaging Spectroradiometer, MODIS), precipitation (Tropical Rainfall Measuring Mission (TRMM) and FengYun (FY)-2D) and in-situ measurements. In the case study on the Red River Basin, a new algorithm has been applied to disaggregate the SMOS (Soil Moisture and Ocean Salinity) soil moisture retrievals by making use of the correlation between evaporative fraction and soil moisture.


Author(s):  
Lan Hoang ◽  
Ngoc Han Tran ◽  
Michael Urynowicz ◽  
Van Giap Dong ◽  
Kim Anh To ◽  
...  

2021 ◽  
Vol 54 (2A) ◽  
pp. 1-10
Author(s):  
Anh Ngoc Le

Seismic characteristics of mud diapir has been investigate over an area of 3900 km2, located in the central part of Song Hong basin, using four 2D seismic lines. There are six mud diapirs and three mud pipes have been documented. The core of the diapir is characterized as a zone of chaotic, disrupted seismic reflection, with the amplitude reflection ranging from low the high. High amplitude reflections are distributed in the top of the some diapir, which is possibly related to the gas accumulation. They are in different sizes, shapes, and the relationship with surrounding rock. They are characterized as deep sourced, high energy rooting from Oligocene/early Miocene shale layers. This organic rich shale rocks are in the oil and gas windows, thus their hydrocarbon generation combining with the tectonic inversion during Miocene make the overpressured shale and therefore rising the diaipirs. The area has experienced several phases of eruption in Middle Miocene, Late Miocene, Late Pliocene and Present day. The discovery and identification of the occurrence of mud diapirs implied a great potential for prediction of structural traps in the central part of the Red River Basin.


2021 ◽  
Vol 13 (9) ◽  
pp. 4926
Author(s):  
Nguyen Duc Luong ◽  
Nguyen Hoang Hiep ◽  
Thi Hieu Bui

The increasing serious droughts recently might have significant impacts on socioeconomic development in the Red River basin (RRB). This study applied the variable infiltration capacity (VIC) model to investigate spatio-temporal dynamics of soil moisture in the northeast, northwest, and Red River Delta (RRD) regions of the RRB part belongs to territory of Vietnam. The soil moisture dataset simulated for 10 years (2005–2014) was utilized to establish the soil moisture anomaly percentage index (SMAPI) for assessing intensity of agricultural drought. Soil moisture appeared to co-vary with precipitation, air temperature, evapotranspiration, and various features of land cover, topography, and soil type in three regions of the RRB. SMAPI analysis revealed that more areas in the northeast experienced severe droughts compared to those in other regions, especially in the dry season and transitional months. Meanwhile, the northwest mainly suffered from mild drought and a slightly wet condition during the dry season. Different from that, the RRD mainly had moderately to very wet conditions throughout the year. The areas of both agricultural and forested lands associated with severe drought in the dry season were larger than those in the wet season. Generally, VIC-based soil moisture approach offered a feasible solution for improving soil moisture and agricultural drought monitoring capabilities at the regional scale.


CATENA ◽  
2021 ◽  
Vol 197 ◽  
pp. 104958 ◽  
Author(s):  
Xi Wei ◽  
Sabine Sauvage ◽  
Sylvain Ouillon ◽  
Thi Phuong Quynh Le ◽  
Didier Orange ◽  
...  

2021 ◽  
pp. 11-28
Author(s):  
Nguyen Mai Dang ◽  
Vu Thanh Tu ◽  
Mukand Babel ◽  
Victor Shinde ◽  
Devesh Sharma

Sign in / Sign up

Export Citation Format

Share Document