Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada

2005 ◽  
Vol 96 (3-4) ◽  
pp. 315-327 ◽  
Author(s):  
C DERKSEN ◽  
A WALKER ◽  
B GOODISON
1993 ◽  
Vol 17 ◽  
pp. 307-311 ◽  
Author(s):  
A.E. Walker ◽  
B.E. Goodison

Snow-cover monitoring using passive microwave remote sensing methods has been shown to be seriously limited under melt conditions when the snowpack becomes wet. A wet snow indicator has been developed using DMSP SSM/I 37 GHz dual-polarization data for the open prairie region of western Canada. The indicator is used to identify areas of wet snow and discriminate them from areas of snow-free land. Validation and testing efforts have illustrated that the addition of the indicator to the current SSM/I snow water equivalent algorithm provides a more accurate representation of spatial snow coverage throughout the winter season for the open prairie region. The improved spatial and temporal information resulting from the use of the indicator enhances both climatological and hydrological analyses of snow-cover conditions using passive microwave data. Although the wet snow indicator has only been validated for the open prairie region of western Canada, it may also be applicable to other regions of similar terrain and vegetative characteristics. However, in areas of dense vegetation, such as the boreal forest, the performance of the indicator is poor due to the generally low 37 GHz polarization differences of the vegetation cover.


1993 ◽  
Vol 17 ◽  
pp. 307-311 ◽  
Author(s):  
A.E. Walker ◽  
B.E. Goodison

Snow-cover monitoring using passive microwave remote sensing methods has been shown to be seriously limited under melt conditions when the snowpack becomes wet. A wet snow indicator has been developed using DMSP SSM/I 37 GHz dual-polarization data for the open prairie region of western Canada. The indicator is used to identify areas of wet snow and discriminate them from areas of snow-free land. Validation and testing efforts have illustrated that the addition of the indicator to the current SSM/I snow water equivalent algorithm provides a more accurate representation of spatial snow coverage throughout the winter season for the open prairie region. The improved spatial and temporal information resulting from the use of the indicator enhances both climatological and hydrological analyses of snow-cover conditions using passive microwave data. Although the wet snow indicator has only been validated for the open prairie region of western Canada, it may also be applicable to other regions of similar terrain and vegetative characteristics. However, in areas of dense vegetation, such as the boreal forest, the performance of the indicator is poor due to the generally low 37 GHz polarization differences of the vegetation cover.


Sign in / Sign up

Export Citation Format

Share Document