Using local transition probability models in Markov random fields for forest change detection

2008 ◽  
Vol 112 (5) ◽  
pp. 2222-2231 ◽  
Author(s):  
Desheng Liu ◽  
Kuan Song ◽  
John R.G. Townshend ◽  
Peng Gong
1992 ◽  
Vol 29 (04) ◽  
pp. 877-884 ◽  
Author(s):  
Noel Cressie ◽  
Subhash Lele

The Hammersley–Clifford theorem gives the form that the joint probability density (or mass) function of a Markov random field must take. Its exponent must be a sum of functions of variables, where each function in the summand involves only those variables whose sites form a clique. From a statistical modeling point of view, it is important to establish the converse result, namely, to give the conditional probability specifications that yield a Markov random field. Besag (1974) addressed this question by developing a one-parameter exponential family of conditional probability models. In this article, we develop new models for Markov random fields by establishing sufficient conditions for the conditional probability specifications to yield a Markov random field.


1992 ◽  
Vol 29 (4) ◽  
pp. 877-884 ◽  
Author(s):  
Noel Cressie ◽  
Subhash Lele

The Hammersley–Clifford theorem gives the form that the joint probability density (or mass) function of a Markov random field must take. Its exponent must be a sum of functions of variables, where each function in the summand involves only those variables whose sites form a clique. From a statistical modeling point of view, it is important to establish the converse result, namely, to give the conditional probability specifications that yield a Markov random field. Besag (1974) addressed this question by developing a one-parameter exponential family of conditional probability models. In this article, we develop new models for Markov random fields by establishing sufficient conditions for the conditional probability specifications to yield a Markov random field.


Sign in / Sign up

Export Citation Format

Share Document