scholarly journals Planning for integration of wind power capacity in power generation using stochastic optimization

2016 ◽  
Vol 59 ◽  
pp. 907-919 ◽  
Author(s):  
Yashar Aliari ◽  
Ali Haghani
2020 ◽  
Vol 20 (2) ◽  
pp. 143-153
Author(s):  
Nguyen Xuan Tung ◽  
Do Huy Cuong ◽  
Bui Thi Bao Anh ◽  
Nguyen Thi Nhan ◽  
Tran Quang Son

Since the East Vietnam Sea has an advantageous geographical location and rich natural resources, we can develop and manage islands and reefs in this region reasonably to declare national sovereignty. Based on 1096 scenes of QuikSCAT wind data of 2006–2009, wind power density at 10 m hight is calculated to evaluate wind energy resources of the East Vietnam Sea. With a combination of wind power density at 70 m hight calculated according to the power law of wind energy profile and reef flats extracted from 35 scenes of Landsat ETM+ images, installed wind power capacity of every island or reef is estimated to evaluate wind power generation of the East Vietnam Sea. We found that the wind power density ranges from levels 4–7, so that the wind energy can be well applied to wind power generation. The wind power density takes on a gradually increasing trend in seasons. Specifically, the wind power density is lower in spring and summer, whereas it is higher in autumn and winter. Among islands and reefs in the East Vietnam Sea, the installed wind power capacity of Hoang Sa archipelago is highest in general, the installed wind power capacity of Truong Sa archipelago is at the third level. The installed wind power capacity of Discovery Reef, Bombay Reef, Tree island, Lincoln island, Woody Island of Hoang Sa archipelago and Mariveles Reef, Ladd Reef, Petley Reef, Cornwallis South Reef of Truong Sa archipelago is relatively high, and wind power generation should be developed on these islands first.


2003 ◽  
Vol 27 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Shashi Persaud ◽  
Brendan Fox ◽  
Damian Flynn

The paper simulates the potential impact of significant wind power capacity on key operational aspects of a medium-sized grid-power system, viz. generator loading levels, system reserve availability and generator ramping requirements. The measured data, from Northern Ireland, consist of three years of 1/2 hourly metered records of (i) total energy generation and (ii) five wind farms, each of 5 MW capacity. These wind power data were scaled-up to represent a 10% annual energy contribution, taking account of diversity on the specific variability of total wind power output. The wind power generation reduced the system non-wind peak-generation. This reduction equalled 20% of the installed wind power capacity. There was also a reduction in the minimum non-wind generation, which equalled 43% of the wind power capacity. The analysis also showed that the spinning-reserve requirement depended on the accuracy of forecasting wind power ahead of scheduling, i.e. on the operational mode. When wind power was predicted accurately, (i) it was possible to reduce non-wind generation without over-commitment, but, (ii) the spinning-reserve non-wind conventional generation would usually have to be increased by 25% of the wind power capacity, unless quick-start gas generation was available. However, with unpredicted wind power generation, (i) despite reductions in non-wind generation, there was frequent over-commitment of conventional generation, but (ii) usually the spinning-reserve margin could be reduced by 10% of the wind power capacity with the same degree of risk. Finally, it was shown that wind power generation did not significantly increase the ramping duty on the system. For accurately predicted and unpredicted wind power the increases were only 4% and 5% respectively.


2014 ◽  
Vol 2 ◽  
pp. 170-173
Author(s):  
Tsuyoshi Higuchi ◽  
Yuichi Yokoi

2005 ◽  
Vol 125 (11) ◽  
pp. 1016-1021 ◽  
Author(s):  
Yoshihisa Sato ◽  
Naotsugu Yoshida ◽  
Ryuichi Shimada

2013 ◽  
Vol 133 (4) ◽  
pp. 350-357 ◽  
Author(s):  
Hiroaki Sugihara ◽  
Akihiro Ogawa ◽  
Manabu Kuramoto ◽  
Fumio Ishikawa ◽  
Hideo Yata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document