scholarly journals Recent progress in Si hetero-junction solar cell: A comprehensive review

2018 ◽  
Vol 82 ◽  
pp. 1990-2004 ◽  
Author(s):  
Bablu K. Ghosh ◽  
Chadwin N.J. Weoi ◽  
Aminul Islam ◽  
Swapan K. Ghosh
2019 ◽  
Author(s):  
Rosalinda H. van Leest ◽  
Daniel Fuhrmann ◽  
Alexander Frey ◽  
Matthias Meusel ◽  
Gerald Siefer ◽  
...  

2014 ◽  
Vol 7 (10) ◽  
pp. 3223-3263 ◽  
Author(s):  
Xiaogang Liu ◽  
Paul R. Coxon ◽  
Marius Peters ◽  
Bram Hoex ◽  
Jacqueline M. Cole ◽  
...  

A comprehensive review on the recent progress of black silicon research and its applications in solar cell technologies.


2015 ◽  
Vol 8 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Zilong Wang ◽  
Hua Zhang ◽  
Wei Zhao ◽  
Zhigang Zhou ◽  
Mengxun Chen

Research on automatic tracking solar concentrator photovoltaic systems has gained increasing attention in developing the solar PV technology. A paraboloidal concentrator with secondary optic is developed for a three-junction GaInP/GalnAs/Ge solar cell. The concentration ratio of this system is 200 and the photovoltaic cell is cooled by the heat pipe. A detailed analysis on the temperature coefficient influence factors of triple-junction solar cell under different high concentrations (75X, 100X, 125X, 150X, 175X and 200X) has been conducted based on the dish-style concentration photovoltaic system. The results show that under high concentrated light intensity, the temperature coefficient of Voc of triple-junction solar cell is increasing as the concentration ratio increases, from -10.84 mV/°C @ 75X growth to -4.73mV/°C @ 200X. At low concentration, the temperature coefficient of Voc increases rapidly, and then increases slowly as the concentration ratio increases. The temperature dependence of η increased from -0.346%/°C @ 75X growth to - 0.103%/°C @ 200X and the temperature dependence of Pmm and FF increased from -0.125 W/°C, -0.35%/°C @ 75X growth to -0.048W/°C, -0.076%/°C @ 200X respectively. It indicated that the temperature coefficient of three-junction GaInP/GalnAs/Ge solar cell is better than that of crystalline silicon cell array under concentrating light intensity.


2021 ◽  
Vol 2 (2) ◽  
pp. 100340
Author(s):  
Choongman Moon ◽  
Brian Seger ◽  
Peter Christian Kjærgaard Vesborg ◽  
Ole Hansen ◽  
Ib Chorkendorff

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


Author(s):  
Md. Aminur Rahman ◽  
Md. Jahirul Islam ◽  
Md. Rafiqul Islam ◽  
M. A. Parvez Mahmud

EcoMat ◽  
2021 ◽  
Author(s):  
Chan Ul Kim ◽  
Eui Dae Jung ◽  
Young Wook Noh ◽  
Seong Kuk Seo ◽  
Yunseong Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document