scholarly journals Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures – A review

2019 ◽  
Vol 101 ◽  
pp. 181-196 ◽  
Author(s):  
Victor Igwemezie ◽  
Ali Mehmanparast ◽  
Athanasios Kolios
2012 ◽  
Vol 446-449 ◽  
pp. 1014-1019 ◽  
Author(s):  
Ruo Yu Zhang ◽  
Chao He Chen ◽  
You Gang Tang ◽  
Xiao Yan Huang

The water area in which water depth is deeper than 50m has special advantage in wind turbine generation, because there are the stable wind speed and small Wind-shear. In such sea area, the offshore wind energy generating equipments should be set up on floating foundation structure. Therefore, it is of great significance to study the floating foundation structures that are available for offshore wind energy generation for the industrialization of the offshore wind power generation. In this paper, the basic type and working principles are reviewed for some novel floating structures developed in recent year. In addition, some key dynamical problems and risk factors of the floating structure are systemically analyzed for working load caused by turbine running and sea environment loads of floating structure. The results are valuable for designing the floating structures of wind turbine generation.


Author(s):  
Abdollah A. Afjeh ◽  
◽  
Brett Andersen ◽  
Jin Woo Lee ◽  
Mahdi Norouzi ◽  
...  

Development of novel offshore wind turbine designs and technologies are necessary to reduce the cost of offshore wind energy since offshore wind turbines need to withstand ice and waves in addition to wind, a markedly different environment from their onshore counterparts. This paper focuses on major design challenges of offshore wind turbines and offers an advanced concept wind turbine that can significantly reduce the cost of offshore wind energy as an alternative to the current popular designs. The design consists of a two-blade, downwind rotor configuration fitted to a fixed bottom or floating foundation. Preliminary results indicate that cost savings of nearly 25% are possible compared with the conventional upwind wind turbine designs.


Author(s):  
Hideyuki Suzuki ◽  
Akira Sato

Due to the limited land area and mountainous topography, Japan is not necessarily suited for land-based wind power generation. But potential of offshore wind energy around the country is huge and has ability to supply whole electricity of the country. Development of offshore wind energy is also a promising solution for establishing sustainable society in the country. Water depth around the country generally becomes sharply deeper with distance from the shoreline and floating platform is necessary to deploy wind turbines. This paper investigates effect of motion of floating platform on the strength of turbine blade, a key issue in designing floating wind turbine, and design requirement for floating platform was discussed. Inertial load induced in the turbine blade by the motion of platform and rotation of turbine was formulated. The formulated load on the blade was verified by experiment with rotating rod on the oscillating tower. Two analysis codes, structural analysis code of turbine blade and motion analysis code of SPAR type floating platform, were developed. The effect of platform motion on the bending moment induced in the blade was investigated using the codes and design requirements for the platform were investigated from a viewpoint of maximum load and fatigue load. From a series of analysis on 5MW wind turbine showed that maximum load on blade is increased by 10% for pitching with amplitude of 5degrees but sectional modulus must be increased by 50% for fatigue. It is concluded that the increase of maximum load on the blade due to the motion of floating platform is not serious but fatigue load can be significant. Design requirement for the motion of floating platform will be that the amplitude of pitching motion should be less than a few degrees so that the land-based wind turbine can be installed on the floating platform with minimum modification.


2017 ◽  
Vol 11 (4) ◽  
pp. 664-680 ◽  
Author(s):  
Tove Brink

Purpose This paper aims to reveal how larger enterprises and small and medium-sized enterprises (SMEs) can enable innovation collaboration for enhanced competitiveness of the offshore wind energy sector. Design/methodology/approach The research is based on a longitudinal qualitative study starting in 2011 with a project-based network learning course with 15 SME wind farm suppliers and follow-up interviews with 10 SMEs and continued with interviews conducted with 20 individual enterprises within operation and maintenance conducted in 2014-2015. Findings The findings reveal challenges as well as opportunities for innovation collaboration between larger enterprises and SMEs to contribute to the innovation and competitiveness of the offshore wind farm sector. A glass ceiling is revealed for demand-driven positions if the SME does not possess rare and specific valuable knowledge. There are opportunities revealed in general for supplier-driven positions if SME suppliers can collaborate and develop interesting solutions for larger enterprises. If SMEs succeed in either of these aims, the SMEs have an opportunity to attain partner-driven collaboration. However, challenges are present according to the understanding of the different organisational approaches in SMEs and larger enterprises and in the different business approaches. Research limitations/implications The research is limited to the offshore wind energy sector. Further research is needed for verification of the findings in other energy sectors. Originality/value A fourfold contribution is made to enhance the understanding of innovation collaboration and to enable competitiveness for the offshore wind energy sector. SMEs, larger enterprises, academic researchers and policy bodies are provided with a model for action within the four positions for innovation collaboration.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6571
Author(s):  
Kwangtae Ha ◽  
Jun-Bae Kim ◽  
Youngjae Yu ◽  
Hyoung-Seock Seo

Not only the driving for offshore wind energy capacity of 12 GW by Korea’s Renewable Energy 2030 plan but also the need for the rejuvenation of existing world-class shipbuilders’ infrastructures is drawing much attention to offshore wind energy in Korea, especially to the diverse substructures. Considering the deep-sea environment in the East Sea, this paper presents detailed modeling and analysis of spar-type substructure for a 5 MW floating offshore wind turbine (FOWT). This process uses a fully coupled integrated load analysis, which was carried out using FAST, a widely used integrated load analysis software developed by NREL, coupled with an in-house hydrodynamic code (UOU code). The environmental design loads were calculated from data recorded over three years at the Ulsan Marine buoy point according to the ABS and DNVGL standards. The total 12 maximum cases from DLC 6.1 were selected to evaluate the structural integrity of the spar-type substructure under the three co-directional conditions (45°, 135°, and 315°) of wind and wave. A three-dimensional (3D) structural finite element (FE) model incorporating the wind turbine tower and floating structure bolted joint connection was constructed in FEGate (pre/post-structural analysis module based on MSC NASTRAN for ship and offshore structures). The FEM analysis applied the external loads such as the structural loads due to the inertial acceleration, buoyancy, and gravity, and the environmental loads due to the wind, wave, and current. The three-dimensional FE analysis results from the MSC Nastran software showed that the designed spar-type substructure had enough strength to endure the extreme limitation in the East Sea based on the von Mises criteria. The current process of this study would be applicable to the other substructures such as the submersible type.


Sign in / Sign up

Export Citation Format

Share Document