Characterization of a microwave microstrip helium plasma with gas-phase sample introduction for the optical emission spectrometric determination of bromine, chlorine, sulfur and carbon using a miniaturized optical fiber spectrometer

2008 ◽  
Vol 63 (3) ◽  
pp. 415-421 ◽  
Author(s):  
Pawel Pohl ◽  
Israel Jimenez Zapata ◽  
Martin A. Amberger ◽  
Nicolas H. Bings ◽  
Jose A.C. Broekaert
1992 ◽  
Vol 41 (9) ◽  
pp. 453-458 ◽  
Author(s):  
Eiji TODA ◽  
Yoshikane KUBOTA ◽  
Goroh ICHIKAWA

Author(s):  
Lin He ◽  
Peixia Li ◽  
Kai Li ◽  
Tao Lin ◽  
Jin Luo ◽  
...  

A new cross double point discharge (CrossPD) microplasma was designed as an excitation source to construct a miniaturized optical emission spectrometer with hydride generation (HG) for sample introduction. The CrossPD...


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 736
Author(s):  
Peter Seidel ◽  
Doreen Ebert ◽  
Robert Schinke ◽  
Robert Möckel ◽  
Simone Raatz ◽  
...  

Better quality control for alloy manufacturing and sorting of post-consumer scraps relies heavily on the accurate determination of their chemical composition. In recent decades, analytical techniques, such as X-ray fluorescence spectroscopy (XRF), laser-induced breakdown spectroscopy (LIBS), and spark optical emission spectroscopy (spark-OES), found widespread use in the metal industry, though only a few studies were published about the comparison of these techniques for commercially available alloys. Hence, we conducted a study on the evaluation of four analytical techniques (energy-dispersive XRF, wavelength-dispersive XRF, LIBS, and spark-OES) for the determination of metal sample composition. It focuses on the quantitative analysis of nine commercial alloys, representing the three most important alloy classes: copper, aluminum, and steel. First, spark-OES is proven to serve as a validation technique in the use of certified alloy reference samples. Following an examination of the lateral homogeneity by XRF, the results of the techniques are compared, and reasons for deviations are discussed. Finally, a more general evaluation of each technique with its capabilities and limitations is given, taking operation-relevant parameters, such as measurement speed and calibration effort, into account. This study shall serve as a guide for the routine use of these methods in metal producing and recycling industries.


Sign in / Sign up

Export Citation Format

Share Document