Structural analysis of the nuclear pore complex by integrated approaches

2009 ◽  
Vol 19 (2) ◽  
pp. 226-232 ◽  
Author(s):  
Nadav Elad ◽  
Tal Maimon ◽  
Daphna Frenkiel-Krispin ◽  
Roderick YH Lim ◽  
Ohad Medalia
Nature ◽  
2015 ◽  
Vol 526 (7571) ◽  
pp. 140-143 ◽  
Author(s):  
Alexander von Appen ◽  
Jan Kosinski ◽  
Lenore Sparks ◽  
Alessandro Ori ◽  
Amanda L. DiGuilio ◽  
...  

2020 ◽  
Vol 29 (12) ◽  
pp. 2510-2527
Author(s):  
Parshuram J. Sonawane ◽  
Pravin Dewangan ◽  
Pankaj Kumar Madheshiya ◽  
Kriti Chopra ◽  
Mohit Kumar ◽  
...  

2016 ◽  
Vol 27 (25) ◽  
pp. 3964-3971 ◽  
Author(s):  
Ethan Laudermilch ◽  
Pei-Ling Tsai ◽  
Morven Graham ◽  
Elizabeth Turner ◽  
Chenguang Zhao ◽  
...  

The human genome encodes four Torsin ATPases, the functions of which are poorly understood. In this study, we use CRISPR/Cas9 engineering to delete all four Torsin ATPases individually and in combination. Using nuclear envelope (NE) blebbing as a phenotypic measure, we establish a direct correlation between the number of inactivated Torsin alleles and the occurrence of omega-shaped herniations within the lumen of the NE. A similar, although not identical, redundancy is observed for LAP1 and LULL1, which serve as regulatory cofactors for a subset of Torsin ATPases. Unexpectedly, deletion of Tor2A in a TorA/B/3A-deficient background results in a stark increase of bleb formation, even though Tor2A does not respond to LAP1/LULL1 stimulation. The robustness of the observed phenotype in Torsin-deficient cells enables a structural analysis via electron microscopy tomography and a compositional analysis via immunogold labeling. Ubiquitin and nucleoporins were identified as distinctively localizing components of the omega-shaped bleb structure. These findings suggest a functional link between the Torsin/cofactor system and NE/nuclear pore complex biogenesis or homeostasis and establish a Torsin-deficient cell line as a valuable experimental platform with which to decipher Torsin function.


2010 ◽  
Vol 395 (3) ◽  
pp. 578-586 ◽  
Author(s):  
Daphna Frenkiel-Krispin ◽  
Bohumil Maco ◽  
Ueli Aebi ◽  
Ohad Medalia

Cell ◽  
2013 ◽  
Vol 155 (6) ◽  
pp. 1233-1243 ◽  
Author(s):  
Khanh Huy Bui ◽  
Alexander von Appen ◽  
Amanda L. DiGuilio ◽  
Alessandro Ori ◽  
Lenore Sparks ◽  
...  

Author(s):  
G. G. Maul

The chromatin of eukaryotic cells is separated from the cytoplasm by a double membrane. One obvious structural specialization of the nuclear membrane is the presence of pores which have been implicated to facilitate the selective nucleocytoplasmic exchange of a variety of large molecules. Thus, the function of nuclear pores has mainly been regarded to be a passive one. Non-membranous diaphragms, radiating fibers, central rings, and other pore-associated structures were thought to play a role in the selective filter function of the nuclear pore complex. Evidence will be presented that suggests that the nuclear pore is a dynamic structure which is non-randomly distributed and can be formed during interphase, and that a close relationship exists between chromatin and the membranous part of the nuclear pore complex.Octagonality of the nuclear pore complex has been confirmed by a variety of techniques. Using the freeze-etching technique, it was possible to show that the membranous part of the pore complex has an eight-sided outline in human melanoma cells in vitro. Fibers which traverse the pore proper at its corners are continuous and indistinguishable from chromatin at the nucleoplasmic side, as seen in conventionally fixed and sectioned material. Chromatin can be seen in octagonal outline if serial sections are analyzed which are parallel but do not include nuclear membranes (Fig. 1). It is concluded that the shape of the pore rim is due to fibrous material traversing the pore, and may not have any functional significance. In many pores one can recognize a central ring with eight fibers radiating to the corners of the pore rim. Such a structural arrangement is also found to connect eight ribosomes at the nuclear membrane.


Author(s):  
N. Panté ◽  
M. Jarnik ◽  
E. Heitlinger ◽  
U. Aebi

The nuclear pore complex (NPC) is a ∼120 MD supramolecular machine implicated in nucleocytoplasmic transport, that is embedded in the double-membraned nuclear envelope (NE). The basic framework of the ∼120 nm diameter NPC consists of a 32 MD cytoplasmic ring, a 66 MD ‘plug-spoke’ assembly, and a 21 MD nuclear ring. The ‘central plug’ seen in en face views of the NPC reveals a rather variable appearance indicating that it is a dynamic structure. Projecting from the cytoplasmic ring are 8 short, twisted filaments (Fig. 1a), whereas the nuclear ring is topped with a ‘fishtrap’ made of 8 thin filaments that join distally to form a fragile, 30-50 nm distal diameter ring centered above the NPC proper (Fig. 1b). While the cytoplasmic filaments are sensitive to proteases, they as well as the nuclear fishtraps are resistant to RNase treatment. Removal of divalent cations destabilizes the distal rings and thereby opens the fishtraps, addition causes them to reform. Protruding from the tips of the radial spokes into perinuclear space are ‘knobs’ that might represent the large lumenal domain of gp210, a membrane-spanning glycoprotein (Fig. 1c) which, in turn, may play a topogenic role in membrane folding and/or act as a membrane-anchoring site for the NPC. The lectin wheat germ agglutinin (WGA) which is known to recognize the ‘nucleoporins’, a family of glycoproteins having O-linked N-acetyl-glucosamine, is found in two locations on the NPC (Fig. 1. d-f): (i) whereas the cytoplasmic filaments appear unlabelled (Fig. 1d&e), WGA-gold labels sites between the central plug and the cytoplasmic ring (Fig. le; i.e., at a radius of 25-35 nm), and (ii) it decorates the distal ring of the nuclear fishtraps (Fig. 1, d&f; arrowheads).


Sign in / Sign up

Export Citation Format

Share Document