immunogold labeling
Recently Published Documents


TOTAL DOCUMENTS

386
(FIVE YEARS 27)

H-INDEX

53
(FIVE YEARS 2)

Author(s):  
Maryna V. Ivanchenko ◽  
Artur A. Indzhykulian ◽  
David P. Corey

Hair cells—the sensory cells of the vertebrate inner ear—bear at their apical surfaces a bundle of actin-filled protrusions called stereocilia, which mediate the cells’ mechanosensitivity. Hereditary deafness is often associated with morphological disorganization of stereocilia bundles, with the absence or mislocalization within stereocilia of specific proteins. Thus, stereocilia bundles are closely examined to understand most animal models of hereditary hearing loss. Because stereocilia have a diameter less than a wavelength of light, light microscopy is not adequate to reveal subtle changes in morphology or protein localization. Instead, electron microscopy (EM) has proven essential for understanding stereocilia bundle development, maintenance, normal function, and dysfunction in disease. Here we review a set of EM imaging techniques commonly used to study stereocilia, including optimal sample preparation and best imaging practices. These include conventional and immunogold transmission electron microscopy (TEM) and scanning electron microscopy (SEM), as well as focused-ion-beam scanning electron microscopy (FIB-SEM), which enables 3-D serial reconstruction of resin-embedded biological structures at a resolution of a few nanometers. Parameters for optimal sample preparation, fixation, immunogold labeling, metal coating and imaging are discussed. Special attention is given to protein localization in stereocilia using immunogold labeling. Finally, we describe the advantages and limitations of these EM techniques and their suitability for different types of studies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256306
Author(s):  
Antonella Barreca ◽  
Emanuel Bottasso ◽  
Francesca Veneziano ◽  
Manuela Giarin ◽  
Alberto Nocifora ◽  
...  

Amyloidosis comprises a spectrum of disorders characterized by the extracellular deposition of amorphous material, originating from an abnormal serum protein. The typing of amyloid into its many variants represents a pivotal step for a correct patient management. Several methods are currently used, including mass spectrometry, immunofluorescence, immunohistochemistry, and immunogold labeling. The aim of the present study was to investigate the accuracy and reliability of immunohistochemistry by means of a recently developed amyloid antibody panel applicable on fixed paraffin-embedded tissues in an automated platform. Patients with clinically and pathologically proven amyloidosis were divided into two cohorts: a pilot one, which included selected amyloidosis cases from 2009 to 2018, and a retrospective one (comprising all consecutive amyloidosis cases analyzed between November 2018 and May 2020). The above-referred panel of antibodies for amyloid classification was tested in all cases using an automated immunohistochemistry platform. When fresh-frozen material was available, immunofluorescence was also performed. Among 130 patients, a total of 143 samples from different organs was investigated. They corresponded to 51 patients from the pilot cohort and 79 ones from the retrospective cohort. In 82 cases (63%), fresh-frozen tissue was tested by immunofluorescence, serving to define amyloid subtype only in 30 of them (36.6%). On the contrary, the automated immunohistochemistry procedure using the above-referred new antibodies allowed to establish the amyloid type in all 130 cases (100%). These included: ALλ (n = 60, 46.2%), ATTR (n = 29, 22.3%), AA (n = 19, 14.6%), ALκ (n = 18, 13.8%), ALys (n = 2, 1.5%), and Aβ2M amyloidosis (n = 2, 1.5%). The present immunohistochemistry antibody panel represents a sensitive, reliable, fast, and low-cost method for amyloid typing. Since immunohistochemistry is available in most pathology laboratories, it may become the new gold standard for amyloidosis classification, either used alone or combined with mass spectrometry in selected cases.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009628
Author(s):  
Razieh Kamali-Jamil ◽  
Ester Vázquez-Fernández ◽  
Brian Tancowny ◽  
Vineet Rathod ◽  
Sara Amidian ◽  
...  

Bovine spongiform encephalopathy (BSE) is a prion disease of cattle that is caused by the misfolding of the cellular prion protein (PrPC) into an infectious conformation (PrPSc). PrPC is a predominantly α-helical membrane protein that misfolds into a β-sheet rich, infectious state, which has a high propensity to self-assemble into amyloid fibrils. Three strains of BSE prions can cause prion disease in cattle, including classical BSE (C-type) and two atypical strains, named L-type and H-type BSE. To date, there is no detailed information available about the structure of any of the infectious BSE prion strains. In this study, we purified L-type BSE prions from transgenic mouse brains and investigated their biochemical and ultrastructural characteristics using electron microscopy, image processing, and immunogold labeling techniques. By using phosphotungstate anions (PTA) to precipitate PrPSc combined with sucrose gradient centrifugation, a high yield of proteinase K-resistant BSE amyloid fibrils was obtained. A morphological examination using electron microscopy, two-dimensional class averages, and three-dimensional reconstructions revealed two structural classes of L-type BSE amyloid fibrils; fibrils that consisted of two protofilaments with a central gap and an average width of 22.5 nm and one-protofilament fibrils that were 10.6 nm wide. The one-protofilament fibrils were found to be more abundant compared to the thicker two-protofilament fibrils. Both fibrillar assemblies were successfully decorated with monoclonal antibodies against N- and C-terminal epitopes of PrP using immunogold-labeling techniques, confirming the presence of polypeptides that span residues 100–110 to 227–237. The fact that the one-protofilament fibrils contain both N- and C-terminal PrP epitopes constrains molecular models for the structure of the infectious conformer in favour of a compact four-rung β-solenoid fold.


2021 ◽  
Vol 4 (7) ◽  
pp. e202000945
Author(s):  
Tatsuo Suzuki ◽  
Nobuo Terada ◽  
Shigeki Higashiyama ◽  
Kiyokazu Kametani ◽  
Yoshinori Shirai ◽  
...  

A purification protocol was developed to identify and analyze the component proteins of a postsynaptic density (PSD) lattice, a core structure of the PSD of excitatory synapses in the central nervous system. “Enriched”- and “lean”-type PSD lattices were purified by synaptic plasma membrane treatment to identify the protein components by comprehensive shotgun mass spectrometry and group them into minimum essential cytoskeleton (MEC) and non-MEC components. Tubulin was found to be a major component of the MEC, with non-microtubule tubulin widely distributed on the purified PSD lattice. The presence of tubulin in and around PSDs was verified by post-embedding immunogold labeling EM of cerebral cortex. Non-MEC proteins included various typical scaffold/adaptor PSD proteins and other class PSD proteins. Thus, this study provides a new PSD lattice model consisting of non-microtubule tubulin-based backbone and various non-MEC proteins. Our findings suggest that tubulin is a key component constructing the backbone and that the associated components are essential for the versatile functions of the PSD.


Holzforschung ◽  
2021 ◽  
Vol 75 (1) ◽  
pp. 1-12
Author(s):  
Ayano Higaki ◽  
Yui Kadowaki ◽  
Arata Yoshinaga ◽  
Keiji Takabe

AbstractXylan deposition and lignification processes were examined in tension wood fibers with gelatinous layers (G-layers) in Mallotus japonicus (Euphorbiaceae). The cell walls consisted of a multi-layered structure of S1 + S2 + G + n(L + G), where n indicates the number of repetitions (n = 0–3) and L indicates very thin lignified layers. The formation and lignification processes of the multi-layered structure of tension wood fibers were examined by light microscopy, ultraviolet microscopy, and transmission electron microscopy (TEM) following KMnO4 staining. The deposition of xylan was examined by immunoelectron microscopy with a monoclonal antibody (LM11). Immunolabelling of xylan appeared in lignified cell wall layers, except in the compound middle lamella (CML), i.e., the S1, S2, and L layers but not the G-layers. The density of LM11 xylan immunogold labeling in S2 layers increased during the formation of G-layers. This increase was due to the shrinkage of S2 layers during development rather than intrusive deposition of xylan through G-layers. Lignification of the CML, S1, and S2 layers proceeded during G-layer formation. The shrinkage of S2 layers occurred almost simultaneously with the lignification of the S2 layers during G-layer formation, suggesting that the S2 layers shrank with lignification.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Om Srivastava ◽  
Kiran Srivastava ◽  
Roy Joseph ◽  
Landon Wilson

Abstract We have generated two mouse models, in one by inserting the human lens αAN101D transgene in CRYαAN101D mice, and in the other by inserting human wild-type αA-transgene in CRYαAWT mice. The CRYαAN101D mice developed cortical cataract at about 7-months of age relative to CRYαAWT mice. The objective of the study was to determine the following relative changes in the lenses of CRYαAN101D- vs. CRYαAWT mice: age-related changes with specific emphasis on protein insolubilization, relative membrane-association of αAN101D vs. WTαA proteins, and changes in intracellular ionic imbalance and membrane organization. Methods Lenses of varying ages from CRYαAWT and CRYαAN101D mice were compared for an age-related protein insolubilization. The relative lens membrane-association of the αAN101D- and WTαA proteins in the two types of mice was determined by immunohistochemical-, immunogold-labeling-, and western blot analyses. The relative levels of membrane-binding of recombinant αAN101D- and WTαA proteins was determined by an in vitro assay, and the levels of intracellular Ca2+ uptake and Na, K-ATPase mRNA were determined in the cultured epithelial cells from lenses of the two types of mice. Results Compared to the lenses of CRYαAWT, the lenses of CRYαAN101D mice exhibited: (A) An increase in age-related protein insolubilization beginning at about 4-months of age. (B) A greater lens membrane-association of αAN101D- relative to WTαA protein during immunogold-labeling- and western blot analyses, including relatively a greater membrane swelling in the CRYαAN101D lenses. (C) During in vitro assay, the greater levels of binding αAN101D- relative to WTαA protein to membranes was observed. (D) The 75% lower level of Na, K-ATPase mRNA but 1.5X greater Ca2+ uptake were observed in cultured lens epithelial cells of CRYαAN101D- than those of CRYαAWT mice. Conclusions The results show that an increased lens membrane association of αAN101D-−relative WTαA protein in CRYαAN101D mice than CRYαAWT mice occurs, which causes intracellular ionic imbalance, and in turn, membrane swelling that potentially leads to cortical opacity.


2020 ◽  
Author(s):  
Om Srivast ◽  
Kiran Srivast ◽  
Roy Joseph ◽  
Landon Wilson

Abstract We have generated two mouse models, in one by inserting the human lens αAN101D transgene in CRYαAN101D mice, and in the other by inserting human wild-type αA-transgene in CRYαAWT mice. The CRYαAN101D mice developed cortical cataract at about 7-months of age relative to CRYαAWT mice. The objective of the study was to determine the following relative changes in the lenses of CRYαAN101D- vs. CRYαAWT mice: age-related changes with specific emphasis on protein insolubilization, relative membrane-association of αAN101D vs. WTαA proteins, and changes in intracellular ionic imbalance and membrane organization. Methods: Lenses of varying ages from CRYαAWT and CRYαAN101D mice were compared for an age-related protein insolubilization. The relative lens membrane-association of the αAN101D- and WTαA proteins in the two types of mice was determined by immunohistochemical-, immunogold-labeling-, and western blot analyses. The relative levels of membrane-binding of recombinant αAN101D- and WTαA proteins was determined by an in vitro assay, and the levels of intracellular Ca2+ uptake and Na, K-ATPase mRNA were determined in the cultured epithelial cells from lenses of the two types of mice.Results: Compared to the lenses of CRYαAWT, the lenses of CRYαAN101D mice exhibited: (A) An increase in age-related protein insolubilization beginning at about 4-months of age. (B) A greater lens membrane-association of αAN101D- relative to WTαA protein during immunogold-labeling- and western blot analyses, including relatively a greater membrane swelling in the CRYαAN101D lenses. (C) During in vitro assay, the greater levels of binding αAN101D- relative to WTαA protein to membranes was observed. (D) The 75% lower level of Na, K-ATPase mRNA but 1.5X greater Ca2+ uptake were observed in cultured lens epithelial cells of CRYαAN101D- than those of CRYαAWT mice. Conclusions: The results show that an increased lens membrane association of αAN101D--relative WTαA protein in CRYαAN101D mice than CRYαAWT mice occurs, which causes intracellular ionic imbalance, and in turn, membrane swelling that potentially leads to cortical opacity.


Sign in / Sign up

Export Citation Format

Share Document