scholarly journals Local elastic buckling coefficients of steel plates in composite steel plate shear walls

2011 ◽  
Vol 18 (1) ◽  
pp. 9-15 ◽  
Author(s):  
A. Arabzade ◽  
H. Moharami ◽  
A. Ayazi
2010 ◽  
Vol 163-167 ◽  
pp. 239-244
Author(s):  
Zhen Guo ◽  
Ying Shu Yuan

An experimental study was performed to investigate the structural capacity of composite steel plate walls with trilateral constrained. Six one-third-scale models of one-story prototype walls with composite steel plate shear walls were tested. The parameters for this test were the width-thickness ratio of infill steel plates and the strength of compound precast plate. Regardless of the infill plate design, the steel plate wall specimens exhibited excellent strength, deformation capacity. The design of boundary connection method is important to small width-thickness ratio of infill plates. Bolt sliding between the infill steel plates and boundary frame would decrease initial stiffness and shear strength of the steel plate shear walls. And more, this result indicates that the initial stiffness and shear strength would be improved highly with compound precast plate as resistant-lateral of infill steel plate. But the precast plate must be have sufficient strengh in design.


2017 ◽  
Vol 16 (2) ◽  
pp. 249-261 ◽  
Author(s):  
Hossein Khosravi ◽  
◽  
Sayed Shoaib Mousavi ◽  
Gholamreza Tadayonfar ◽  
◽  
...  

2012 ◽  
Vol 193-194 ◽  
pp. 1470-1475 ◽  
Author(s):  
Marco Valente

This study investigates an innovative method based on low yield steel plate shear walls for seismic retrofitting of existing reinforced concrete (R/C) structures. A simplified numerical model of steel shear panels is developed for global analyses of multi-story R/C frames. The seismic performance of a non-ductile five-story R/C frame retrofitted with steel plate shear walls is evaluated in terms of drift control and energy dissipation capacity using nonlinear dynamic analyses. The results obtained by the application of two different story-wise distributions of steel plates are compared. In case of retrofitted frames a considerable decrease of the maximum top displacements is registered and the energy dissipated by the primary structural elements is significantly reduced for severe seismic actions. The energy dissipation concentrates in the steel panels, reducing the plastic demand on the structural members, along with the potential for structural damage. The different story-wise distributions of the steel panels change the damage distribution throughout the frame. The uniform arrangement of the steel panel thickness along the height of the frame causes a concentration of damage in the columns of the first story. In case of steel panel distribution proportional to story shear, the energy dissipation results more uniform over the height of the frame and a significant decrease of damage is registered for the columns of all the storeys.


2020 ◽  
Vol 168 ◽  
pp. 105985 ◽  
Author(s):  
Mohammad Meghdadian ◽  
Nima Gharaei-Moghaddam ◽  
Alireza Arabshahi ◽  
Navid Mahdavi ◽  
Mansour Ghalehnovi

Sign in / Sign up

Export Citation Format

Share Document