scholarly journals A long-term study of new particle formation in a coastal environment: Meteorology, gas phase and solar radiation implications

2015 ◽  
Vol 511 ◽  
pp. 723-737 ◽  
Author(s):  
M. Sorribas ◽  
J.A. Adame ◽  
F.J. Olmo ◽  
J.M. Vilaplana ◽  
M. Gil-Ojeda ◽  
...  
2018 ◽  
Vol 18 (3) ◽  
pp. 1835-1861 ◽  
Author(s):  
Johannes Größ ◽  
Amar Hamed ◽  
André Sonntag ◽  
Gerald Spindler ◽  
Hanna Elina Manninen ◽  
...  

Abstract. This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2–20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.


2015 ◽  
Vol 15 (2) ◽  
pp. 2305-2353 ◽  
Author(s):  
J. Größ ◽  
W. Birmili ◽  
A. Hamed ◽  
A. Sonntag ◽  
A. Wiedensohler ◽  
...  

Abstract. This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the diurnal evolution of the meteorological and gas phase parameters involved. Atmospheric aerosol observations include Neutral cluster and Air Ion Spectrometer (NAIS) measurements at the research station Melpitz, East Germany between 2008 and 2011. Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter range 2–20 nm. To study the relationship with gaseous precursors, a proximity measure was calculated for the sulfuric acid concentration on the basis of a one month intensive measurement campaign in May 2008. A major result was that the number concentration of fresh produced neutral particles correlated significantly with the amount of sulfur dioxide available as a main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations, which also represent a recognised precursor of aerosol particle nucleation. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events, and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established with certainty. On the basis of observed diurnal cycles of aerosol, gas phase, and meteorological parameters near the ground, we conclude that particle formation is likely to be induced aloft, rather than near the ground.


1997 ◽  
Vol 31 (6) ◽  
pp. 1811-1816 ◽  
Author(s):  
Barbara R. Hillery ◽  
Ilora Basu ◽  
Clyde W. Sweet ◽  
Ronald A. Hites

2007 ◽  
Vol 38 (6) ◽  
pp. 14
Author(s):  
DAMIAN MCNAMARA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document