scholarly journals Cycling of redox-sensitive trace metals in barrier island freshwater lenses

2021 ◽  
Vol 768 ◽  
pp. 144964
Author(s):  
Anja Reckhardt ◽  
Stephan L. Seibert ◽  
Tobias Holt ◽  
Janis Ahrens ◽  
Melanie Beck ◽  
...  
Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Tobias Holt ◽  
Janek Greskowiak ◽  
Stephan L. Seibert ◽  
Gudrun Massmann

The drinking water supply on barrier islands largely depends on freshwater lenses, which are also highly relevant for island ecosystems. The freshwater lens presented in this study is currently developing (since the 1970s) below the very young eastern part of the North Sea barrier island Spiekeroog, the so-called “Ostplate.” Due to the absence of coastal protection measures, formation, shape, and extent of the freshwater lens below the Ostplate are unaffected by human activities but exposed to dynamic changes, e.g., geomorphological variations and storm tides. The main aim of this paper was to reconstruct the evolution of the freshwater lens over several decades in order to explain the present-day groundwater salinity distribution. In addition, the study assessed the impact of geomorphological variations and storm tides on the freshwater lens formation. Detailed field observations were combined with a transient 2-D density-dependent modeling approach. Both field observations and simulations show an asymmetric freshwater lens after ~42 years of formation, whereby the horizontal extent is limited by the elevated dune area. The simulations indicate that the young freshwater lens has nearly reached quasi-steady-state conditions mainly due to the continuous mixing with seawater infiltrating during storm tides, which inhibits further growth of the freshwater lens on the narrow island. The findings further show that (i) a neglection of storm tides results in a significant overestimation of the freshwater lens extent, and (ii) the modeled present groundwater salinity distribution and shape of the freshwater lens are predominantly determined by the position and extent of the elevated dune area at the past ~20 years. Hence, annual storm tides have to be directly implemented into numerical models to explain the groundwater salinity distribution and the extent of young freshwater lenses located in highly dynamic tidal environments.


Author(s):  
B. J. Panessa ◽  
H. W. Kraner ◽  
J. B. Warren ◽  
K. W. Jones

During photoexcitation the retina requires specific electrolytes and trace metals for optimal function (Na, Mg, Cl, K, Ca, S, P, Cu and Zn). According to Hagins (1981), photoexcitation and generation of a nerve impulse involves the movement of Ca from the rhodopsin-ladened membranes of the rod outer segment (ROS) to the plasmalemma, which in turn decreases the in-flow of Na into the photoreceptor, resulting in hyperpolarization. In toad isolated retinas, the presence of Ba has been found to increase the amplitude and prolong the delay of the light response (Brown and Flaming, 1978). Trace metals such as Cu, Zn and Se are essential for the activity of the metalloenzymes of the retina and retina pigment epithelium (RPE) (i.e. carbonic anhydrase, retinol dehydrogenase, tyrosinase, glutathione peroxidase, superoxide dismutase...). Therefore the content and fluctuations of these elements in the retina and choroid are of fundamental importance for the maintenance of vision. This paper presents elemental data from light and dark adapted frog ocular tissues examined by electron beam induced x-ray microanalysis, x-ray fluorescence spectrometry (XRF) and proton induced x-ray emission spectrometry (PIXE).


Author(s):  
James S. Webber

INTRODUCTION“Acid rain” and “acid deposition” are terms no longer confined to the lexicon of atmospheric scientists and 1imnologists. Public awareness of and concern over this phenomenon, particularly as it affects acid-sensitive regions of North America, have increased dramatically in the last five years. Temperate ecosystems are suffering from decreased pH caused by acid deposition. Human health may be directly affected by respirable sulfates and by the increased solubility of toxic trace metals in acidified waters. Even man's monuments are deteriorating as airborne acids etch metal and stone features.Sulfates account for about two thirds of airborne acids with wet and dry deposition contributing equally to acids reaching surface waters or ground. The industrial Midwest is widely assumed to be the source of most sulfates reaching the acid-sensitive Northeast since S02 emitted as a byproduct of coal combustion in the Midwest dwarfs S02 emitted from all sources in the Northeast.


2003 ◽  
Vol 104 ◽  
pp. 435-438 ◽  
Author(s):  
B. S. Twining ◽  
S. B. Baines ◽  
N. S. Fisher ◽  
C. Jacobsen ◽  
J. Maser
Keyword(s):  

2007 ◽  
Author(s):  
T. Campbell ◽  
B. de Sonneville ◽  
L. Benedet ◽  
D. J. W. Walstra ◽  
C. W. Finkl

Sign in / Sign up

Export Citation Format

Share Document