Selective transport-recovery of bismuth(III) by a polymer inclusion membrane containing polyvinyl chloride base polymer and bis(2-ethylhexyl)phosphoric acid

Author(s):  
Davood Kazemi ◽  
Mohammad Reza Yaftian
2009 ◽  
Vol 329 (1-2) ◽  
pp. 169-174 ◽  
Author(s):  
Ali Tor ◽  
Gulsin Arslan ◽  
Harun Muslu ◽  
Ahmet Celiktas ◽  
Yunus Cengeloglu ◽  
...  

2014 ◽  
Vol 16 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Beata Pospiech

Abstract In this work the selective transport of cobalt(II) and lithium(I) ions from aqueous chloride solutions through polymer inclusion membranes (PIMs) is presented. Triisooctylamine (TIOA) has been applied as the ion carrier in membrane. The effects of various parameters on the transport of Co(II) and Li(I) were studied. The obtained results show that Co(II) ions were effectively removed from source phase through PIM containing 32 wt.% TIOA, 22 wt.% CTA (cellulose triacetate) and 46 wt.% ONPOE (o-nitrophenyl octyl ether) or ONPPE (o-nitrophenyl pentyl ether) into deionized water as the receiving phase. The results indicate that there is a possibility of polymer inclusion membranes application to recover Co(II) and Li(I) from aqueous chloride solutions


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 90
Author(s):  
Salar Bahrami ◽  
Leila Dolatyari ◽  
Hassan Shayani-Jam ◽  
Mohammad Reza Yaftian ◽  
Spas D. Kolev

A polymer inclusion membrane (PIM) composed of 50 wt% base polymer poly(vinylidenefluoride-co-hexafluoropropylene), 40 wt% extractant Aliquat® 336, and 10 wt% dibutyl phthalate as plasticizer/modifier provided the efficient extraction of vanadium(V) (initial concentration 50 mg L−1) from 0.1 M sulfate solutions (pH 2.5). The average mass and thickness of the PIMs (diameter 3.5 cm) were 0.057 g and 46 μm, respectively. It was suggested that V(V) was extracted as VO2SO4− via an anion exchange mechanism. The maximum PIM capacity was estimated to be ~56 mg of V(V)/g for the PIM. Quantitative back-extraction was achieved with a 50 mL solution of 6 M H2SO4/1 v/v% of H2O2. It was assumed that the back-extraction process involved the oxidation of VO2+ to VO(O2)+ by H2O2. The newly developed PIM, with the optimized composition mentioned above, exhibited an excellent selectivity for V(V) in the presence of metallic species present in digests of spent alumina hydrodesulfurization catalysts. Co-extraction of Mo(VI) with V(V) was eliminated by its selective extraction at pH 1.1. Characterization of the optimized PIM was performed by contact angle measurements, atomic-force microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis/derivatives thermogravimetric analysis and stress–strain measurements. Replacement of dibutyl phthalate with 2-nitrophenyloctyl ether improved the stability of the studied PIMs.


Sign in / Sign up

Export Citation Format

Share Document