Spatial impacts of technological innovations on the levelized cost of energy for offshore wind power plants in the United States

2021 ◽  
Vol 45 ◽  
pp. 101059
Author(s):  
Matt Shields ◽  
Philipp Beiter ◽  
William Kleiber
HVDC Grids ◽  
2016 ◽  
pp. 109-140
Author(s):  
Mikel De Prada-Gil ◽  
Jose Luis Domínguez-García ◽  
Francisco Díaz-González ◽  
Andreas Sumper

2019 ◽  
Vol 254 ◽  
pp. 113719 ◽  
Author(s):  
Rongsen Jin ◽  
Peng Hou ◽  
Guangya Yang ◽  
Yuanhang Qi ◽  
Cong Chen ◽  
...  

2020 ◽  
pp. 0309524X1990101 ◽  
Author(s):  
Mark Bolinger ◽  
Eric Lantz ◽  
Ryan Wiser ◽  
Ben Hoen ◽  
Joseph Rand ◽  
...  

A wind turbine’s “specific power” rating relates its capacity to the swept area of its rotor in terms of Watt per square meter. For a given generator capacity, specific power declines as rotor size increases. In land-rich but capacity-constrained wind power markets, such as the United States, developers have an economic incentive to maximize megawatt-hours per constrained megawatt, and so have favored turbines with ever-lower specific power. To date, this trend toward lower specific power has pushed capacity factors higher while reducing the levelized cost of energy. We employ geospatial levelized cost of energy analysis across the United States to explore whether this trend is likely to continue. We find that under reasonable cost scenarios (i.e. presuming that logistical challenges from very large blades are surmountable), low-specific-power turbines could continue to be in demand going forward. Beyond levelized cost of energy, the boost in market value that low-specific-power turbines provide could become increasingly important as wind penetration grows.


2020 ◽  
Vol 14 (12) ◽  
pp. 2166-2175
Author(s):  
Jaime Martínez-Turégano ◽  
Salvador Añó-Villalba ◽  
Soledad Bernal-Perez ◽  
Ruben Peña ◽  
Ramon Blasco-Gimenez

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1914 ◽  
Author(s):  
Roland Ryndzionek ◽  
Łukasz Sienkiewicz

This paper presents an overview of the DC link development and evolution dedicated to HVDC structure for connecting offshore wind power plants to onshore power systems. The growing demand for the green energy has forced investors in power industry to look for resources further out at sea. Hence, the development of power electronics and industrial engineering has enabled offshore wind farms to be situated further from the shore and in deeper waters. However, their development will require, among other technologies, DC-DC conversion systems. The advantages of HVDC over HVAC technology in relation to transmission distance are given. The different HVDC configurations and topologies of HVDC converters are elucidated. In this context, the HVDC grids are a promising alternative for the expansion of the existing AC grid.


2015 ◽  
Vol 112 (39) ◽  
pp. 11985-11988 ◽  
Author(s):  
Jeremy Firestone ◽  
Cristina L. Archer ◽  
Meryl P. Gardner ◽  
John A. Madsen ◽  
Ajay K. Prasad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document