scholarly journals Geometry optimisation of vertical axis wind turbine with Gurney flap for performance enhancement at low, medium and high ranges of tip speed ratios

2022 ◽  
Vol 49 ◽  
pp. 101779
Author(s):  
Taurista P. Syawitri ◽  
Yufeng Yao ◽  
Jun Yao ◽  
Budi Chandra
2021 ◽  
Vol 165 ◽  
pp. 464-480
Author(s):  
Haitian Zhu ◽  
Wenxing Hao ◽  
Chun Li ◽  
Shuai Luo ◽  
Qingsong Liu ◽  
...  

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Yan Yan ◽  
Eldad Avital ◽  
John Williams ◽  
Jiahuan Cui

Abstract A numerical study was carried out to investigate the effects of a Gurney flap (GF) on the aerodynamics performance of the NACA 00 aerofoil and an associated three-blade rotor of a H-type Darrieus wind turbine. The flow fields around a single aerofoil and the vertical axis wind turbine (VAWT) rotor are studied using unsteady Reynolds-averaged Navier–Stokes equations (URANS). The height of GF ranges from 1% to 5% of the aerofoil chord length. The results show that the GF can increase the lift and lift-to-drag ratio of the aerofoil as associated with the generation of additional vortices near the aerofoil trailing edge. As a result, adding a GF can significantly improve the power coefficient of the VAWT at low tip speed ratio (TSR), where it typically gives low power production. The causing mechanism is discussed in detail, pointing to flow separation and dynamic stall delay.


2014 ◽  
Vol 607 ◽  
pp. 581-587 ◽  
Author(s):  
Noor A. Ahmed ◽  
K.J. Netto

In this paper the computer aided design and manufacture of a rot with winglet for performance enhancement of a vertical axis wind turbine is presented. Both computer numerical control milling and rapid prototyping have been used in the manufacture of the rotor. The rotor was then tested for performance using the large wind tunnel of the Aerodynamics laboratory of University of New South Wales. The results show substantial improvement of the rotor with the winglets installed.


Sign in / Sign up

Export Citation Format

Share Document