scholarly journals Assessment of performance enhancement of a semi-submersible vertical axis wind turbine with an optimized Darrieus rotor

2018 ◽  
Vol 167 ◽  
pp. 227-240 ◽  
Author(s):  
Zhengshun Cheng ◽  
Kai Wang ◽  
Muk Chen Ong
Author(s):  
Gwani Mohammed ◽  
Mamuda Buhari ◽  
Umar Muhammed Kangiwa ◽  
John Danyaro

Vertical axis wind turbines (VAWT) have attracted a lot of attention recently as an efficient tool in harnessing wind energy; however these types of wind turbine are faced with some challenges which affect their overall performance. The Darrieus rotor has difficulty to self-start by itself while the Savonius rotor has low efficiency. The performance of these turbines can be improved by combining the two VAWTs as one system. This paper presents the design of a hybrid VAWTs turbine. The Hybrid VAWTs combines the Darrieus rotor and the Savonius rotor as a single system to produce a high starting torque and enhanced efficiency. The Savonius rotor is placed at the centre of the three vertical blades of the Darrieus H-rotor to form the hybrid VAWTs. The hybrid VAWT was tested at four different wind speed i.e. V = 4.80 m/s, 4.50 m/s, 4.30 m/s and 3.90 m/s respectively. The performance of the hybrid VAWT was compared with the conventional straight bladed VAWT under similar experimental conditions. The obtained results showed that there is substantial improvement in the self-starting ability and coefficient of power (Cp). At V = 4.80 m/s, the Cp values for hybrid VAWT increased by 92% compared to straight bladed H-rotor VAWT. Similar improvement was also observed at wind speed of V = 4.50 m/s, 4.30 m/s, and 3.90 m/s where the Cp values increases by 71%, 10%, and 67% respectively compared to the straight bladed H-rotor.


2021 ◽  
Vol 165 ◽  
pp. 464-480
Author(s):  
Haitian Zhu ◽  
Wenxing Hao ◽  
Chun Li ◽  
Shuai Luo ◽  
Qingsong Liu ◽  
...  

2014 ◽  
Vol 607 ◽  
pp. 581-587 ◽  
Author(s):  
Noor A. Ahmed ◽  
K.J. Netto

In this paper the computer aided design and manufacture of a rot with winglet for performance enhancement of a vertical axis wind turbine is presented. Both computer numerical control milling and rapid prototyping have been used in the manufacture of the rotor. The rotor was then tested for performance using the large wind tunnel of the Aerodynamics laboratory of University of New South Wales. The results show substantial improvement of the rotor with the winglets installed.


2020 ◽  
Vol 17 (2) ◽  
pp. 833-839
Author(s):  
Muhamad Fadhli Ramlee ◽  
Ahmad Fazlizan ◽  
Sohif Mat

Among renewable energy resources, wind energy is one of the best alternative for power generation. Recently, vertical axis wind turbine (VAWT) received renewed interest as small-scale wind energy converter due to its suitability for urban application, where the wind condition is known to be unsteady and turbulence. Amongst various type of VAWTs, H-type Darrieus rotor has become more popular, thanks to its simple construction features, resulting to low manufacturing and installation cost. The aim of this paper is to evaluate numerically the power performance of straight-bladed Darrieus VAWT with different turbine solidity using computational fluid dynamic (CFD) technology. A series of two-dimensional CFD simulations of a three-bladed H-type Darrieus rotor were performed with 3 different solidities, σ (0.3, 0.5 and 0.7) to evaluate their power performance. Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations were used to calculate the instantaneous moment coefficient, Cm and power coefficient, Cp over a range of tip speed ratio, λ (0.5–4.5) with a free stream velocity of 8.0 m/s. The simulation results show that high solidity turbine performed well at low values of λ while turbine with low solidity has a wider operating range of λ and performed better at λ > 3.0 due to less blade-wake interactions between upstream and downstream halves of the turbine and lower blockage effect. The findings lend substantially to our understanding of physics flow around blades and turbine in order to optimize the power performance of small scale straight-bladed Darrieus VAWT operating in unsteady and turbulence wind condition.


2018 ◽  
Vol 43 (5) ◽  
pp. 459-475 ◽  
Author(s):  
Khaled Souaissa ◽  
Moncef Ghiss ◽  
Mouldi Chrigui ◽  
Hatem Bentaher ◽  
Aref Maalej

Improving the H-Darrieus rotor is often followed by the investigation of the influence of the turbine’s parameter design, notably, the aspect ratio, the solidity ( σ), the tip speed ratio, and the airfoil profile shape. In this work, we are interested in both the aerodynamic flows around a straight cambered blade profile and the rotor turbine wake separation of a Darrieus vertical axis wind turbine. The aim of this study is to better understand the evolution of the instantaneous torque and the generated-separated blade vortex during full rotation. Indeed, a three-dimensional computational fluid dynamics model of a vertical axis wind turbine with a straight cambered blade profile NACA4312 operating over a large range of tip speed ratio is considered. The flows are governed by Reynolds-averaged Navier–Stokes equations and the turbulence is modeled with shear stress transport formulations k- ω. This research revealed a high correlation between the evolution of the torque coefficient and the generated-separated blades vortex. In particular, a good correlation between the maximum tip vortices size and the torque coefficient peak is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document