scholarly journals Information causality, the Tsirelson bound, and the ‘being-thus’ of things

Author(s):  
Michael E. Cuffaro
Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 114
Author(s):  
Michael Silberstein ◽  
William Mark Stuckey ◽  
Timothy McDevitt

Our account provides a local, realist and fully non-causal principle explanation for EPR correlations, contextuality, no-signalling, and the Tsirelson bound. Indeed, the account herein is fully consistent with the causal structure of Minkowski spacetime. We argue that retrocausal accounts of quantum mechanics are problematic precisely because they do not fully transcend the assumption that causal or constructive explanation must always be fundamental. Unlike retrocausal accounts, our principle explanation is a complete rejection of Reichenbach’s Principle. Furthermore, we will argue that the basis for our principle account of quantum mechanics is the physical principle sought by quantum information theorists for their reconstructions of quantum mechanics. Finally, we explain why our account is both fully realist and psi-epistemic.


2021 ◽  
Vol 1 (1-2) ◽  
Author(s):  
Dean Radin ◽  
Peter Bancel ◽  
Arnaud Delorme

Objective: Four laboratory studies and an online experiment explored psychophysical (mind-matter) interactions with quantum entangled photons. Method: Entanglement correlation strength measured in real-time was presented via a graph or dynamic images displayed on a computer monitor or web browser. Participants were tasked with mentally influencing that metric. Results: A statistically significant increase in entanglement strength was obtained in experimental conditions in the four lab studies (p < 0.02), with particularly strong results observed in three studies conducted at the Institute of Noetic Sciences (p < 0.0002). Modest results (p < 0.05) were observed in a high-quality subset of entanglement samples in an online experiment. Control experiments using the same equipment and protocols, but without observers present, showed results consistent with chance expectation in both the lab and online studies. Conclusion: These outcomes suggest that the fidelity of entangled states and the nonlocal resource they entail may be mutable in systems that include conscious awareness. This is potentially of interest for quantum information technologies such as quantum computation, encryption, key distribution, and teleportation. The results are also relevant for interpretations of quantum theory, especially if future studies show that entanglement strength can be mentally modulated above the Tsirelson Bound – the upper limit predicted by quantum theory. Such an outcome would suggest that quantum theory in its present form does not hold when physical systems interact with certain mental states. The results of these exploratory experiments justify continued investigation of entangled photons as targets of mind-matter interaction.


Author(s):  
Ben Toner

We describe a new technique for obtaining Tsirelson bounds, which are upper bounds on the quantum value of a Bell inequality. Since quantum correlations do not allow signalling, we obtain a Tsirelson bound by maximizing over all no-signalling probability distributions. This maximization can be cast as a linear programme. In a setting where three parties, A, B and C, share an entangled quantum state of arbitrary dimension, we (i) bound the trade-off between AB's and AC's violation of the Clauser–Horne–Shimony–Holt inequality and (ii) demonstrate that forcing B and C to be classically correlated prevents A and B from violating certain Bell inequalities, relevant for interactive proof systems and cryptography.


Sign in / Sign up

Export Citation Format

Share Document