information causality
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 126 (22) ◽  
Author(s):  
Nikolai Miklin ◽  
Marcin Pawłowski

2020 ◽  
Vol 69 ◽  
pp. 1351-1393
Author(s):  
Amit K Chopra ◽  
Samuel H Christie V ◽  
Munindar P. Singh

Communication protocols are central to engineering decentralized multiagent systems. Modern protocol languages are typically formal and address aspects of decentralization, such as asynchrony. However, modern languages differ in important ways in their basic abstractions and operational assumptions. This diversity makes a comparative evaluation of protocol languages a challenging task. We contribute a rich evaluation of diverse and modern protocol languages. Among the selected languages, Scribble is based on session types; Trace-C and Trace-F on trace expressions; HAPN on hierarchical state machines, and BSPL on information causality. Our contribution is four-fold. One, we contribute important criteria for evaluating protocol languages. Two, for each criterion, we compare the languages on the basis of whether they are able to specify elementary protocols that go to the heart of the criterion. Three, for each language, we map our findings to a canonical architecture style for multiagent systems, highlighting where the languages depart from the architecture. Four, we identify design principles for protocol languages as guidance for future research.


2019 ◽  
pp. 129-141
Author(s):  
Valerio Scarani

The fact that the no-signaling set is larger than the quantum set suggests that the excess regions could be cut off by invoking additional constraints. In this chapter, we present some of the constraints that have been proposed as “physical principles”: information causality, macroscopic locality and local orthogonality. All three capture interesting features of the quantum set but fail to single ti out exactly.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2989 ◽  
Author(s):  
Yinfeng Li ◽  
Dingcheng Yang ◽  
Yu Xu ◽  
Lin Xiao ◽  
Haole Chen

This paper investigates mobile relaying in wireless powered communication networks (WPCN), where an unmanned aerial vehicle (UAV) is employed to help information delivery from multiple sources to destination with communication channels severely blocked. The sources are low-power without energy supply. To support information transmission, the UAV acts as a hybrid access point (AP) to provide wireless power transfer (WPT) and information reception for sources. We set the issue of system throughput maximization as the optimization problem. On the one hand, the system is subject to the information causality constraint due to the dependent processes of information reception and transmission for the UAV. On the other hand, the sources are constrained by a so-called neutrality constraints due to the dependent processes of energy harvesting and energy consumption. In addition, we take account of the access delay issue of all ground nodes. Specifically, two paradigms of delay-tolerant case and delay-sensitive case are presented. However, the formulated problem including optimizations for time slot scheduling, power allocation and UAV trajectory is non-convex and thus is difficult to obtain its optimal solution. To tackle this problem, we apply the successive convex approximation (SCA) technique and propose an iterative algorithm by which a suboptimal solution can be achieved. Simulation results validate our proposed design, and show that the obtained suboptimal solution is high-quality, as compared to benchmark scheme.


2017 ◽  
Vol 17 (15&16) ◽  
pp. 1261-1276
Author(s):  
Ryuhei Mori

Buhrman showed that an efficient communication protocol implies a reliable XOR game protocol. This idea rederives Linial and Shraibman’s lower bound of randomized and quantum communication complexities, which was derived by using factorization norms, with worse constant factor in much more intuitive way. In this work, we improve and generalize Buhrman’s idea, and obtain a class of lower bounds for randomized communication complexity including an exact Linial and Shraibman’s lower bound as a special case. In the proof, we explicitly construct a protocol for XOR game from a randomized communication protocol by using a concept of nonlocal boxes and Paw lowski et al.’s elegant protocol, which was used for showing the violation of information causality in superquantum theories.


Quantum ◽  
2017 ◽  
Vol 1 ◽  
pp. 15 ◽  
Author(s):  
Thomas D. Galley ◽  
Lluis Masanes

The standard postulates of quantum theory can be divided into two groups: the first one characterizes the structure and dynamics of pure states, while the second one specifies the structure of measurements and the corresponding probabilities. In this work we keep the first group of postulates and characterize all alternatives to the second group that give rise to finite-dimensional sets of mixed states. We prove a correspondence between all these alternatives and a class of representations of the unitary group. Some features of these probabilistic theories are identical to quantum theory, but there are important differences in others. For example, some theories have three perfectly distinguishable states in a two-dimensional Hilbert space. Others have exotic properties such as lack of bit symmetry, the violation of no simultaneous encoding (a property similar to information causality) and the existence of maximal measurements without phase groups. We also analyze which of these properties single out the Born rule.


Sign in / Sign up

Export Citation Format

Share Document