Phase correction of discrete Fourier transform coefficients to reduce frequency estimation bias of single tone complex sinusoid

2014 ◽  
Vol 94 ◽  
pp. 108-117 ◽  
Author(s):  
Jan-Ray Liao ◽  
Chun-Ming Chen
2003 ◽  
Vol 83 (8) ◽  
pp. 1661-1671 ◽  
Author(s):  
Stefan Franz ◽  
Sanjit K. Mitra ◽  
Gerhard Doblinger

2015 ◽  
Vol 22 (3) ◽  
pp. 403-416 ◽  
Author(s):  
Xin Liu ◽  
Yongfeng Ren ◽  
Chengqun Chu ◽  
Wei Fang

Abstract This paper presents a simple DFT-based golden section searching algorithm (DGSSA) for the single tone frequency estimation. Because of truncation and discreteness in signal samples, Fast Fourier Transform (FFT) and Discrete Fourier Transform (DFT) are inevitable to cause the spectrum leakage and fence effect which lead to a low estimation accuracy. This method can improve the estimation accuracy under conditions of a low signal-to-noise ratio (SNR) and a low resolution. This method firstly uses three FFT samples to determine the frequency searching scope, then – besides the frequency – the estimated values of amplitude, phase and dc component are obtained by minimizing the least square (LS) fitting error of three-parameter sine fitting. By setting reasonable stop conditions or the number of iterations, the accurate frequency estimation can be realized. The accuracy of this method, when applied to observed single-tone sinusoid samples corrupted by white Gaussian noise, is investigated by different methods with respect to the unbiased Cramer-Rao Low Bound (CRLB). The simulation results show that the root mean square error (RMSE) of the frequency estimation curve is consistent with the tendency of CRLB as SNR increases, even in the case of a small number of samples. The average RMSE of the frequency estimation is less than 1.5 times the CRLB with SNR = 20 dB and N = 512.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5066
Author(s):  
Xiangdong Huang ◽  
Lu Cao ◽  
Wei Lu

The closed-form robust Chinese Remainder Theorem (CRT) is a powerful approach to achieve single-frequency estimation from noisy undersampled waveforms. However, the difficulty of CRT-based methods’ extension into the multi-tone case lies in the fact it is complicated to explore the mapping relationship between an individual tone and its corresponding remainders. This work deals with this intractable issue by means of decomposing the desired multi-tone estimator into several single-tone estimators. Firstly, high-accuracy harmonic remainders are calculated by applying all-phase Discrete Fourier Transform (apDFT) and spectrum correction operations on the undersampled waveforms. Secondly, the aforementioned mapping relationship is built up by a novel frequency classifier which fully captures the amplitude and phase features of remainders. Finally, the frequencies are estimated one by one through directly applying the closed-form robust CRT into these remainder groups. Due to all the components (including closed-form CRT, the apDFT, the spectrum corrector and the remainder classifier) only involving slight computation complexity, the proposed scheme is of high efficiency and consumes low hardware cost. Moreover, numeral results also show that the proposed method possesses high accuracy.


Sign in / Sign up

Export Citation Format

Share Document