P308 Arousal and gasping autoresuscitation compared to reflex reversal of dysfunctions by gasp-like aspiration reflex

2006 ◽  
Vol 7 ◽  
pp. S45
Author(s):  
Z. Tomori ◽  
V. Donic ◽  
S. Gresova ◽  
R. Benacka ◽  
J. Jakus
2013 ◽  
Vol 109 (9) ◽  
pp. 2335-2344 ◽  
Author(s):  
Sabata Gervasio ◽  
Dario Farina ◽  
Thomas Sinkjær ◽  
Natalie Mrachacz-Kersting

During human walking, precise coordination between the two legs is required in order to react promptly to any sudden hazard that could threaten stability. The networks involved in this coordination are not yet completely known, but a direct spinal connection between soleus (SOL) muscles has recently been revealed. For this response to be functional, as previously suggested, we hypothesize that it will be accompanied by a reaction in synergistic muscles, such as gastrocnemius lateralis (GL), and that a reversal of the response would occur when an opposite reaction is required. In the present study, surface EMGs of contralateral SOL and GL were analyzed after tibial nerve (TN), sural nerve (SuN), and medial plantar nerve (MpN) stimulation during two tasks in which opposite reactions are functionally expected: normal walking (NW), just before ipsilateral heel strike, and hybrid walking (HW) (legs walking in opposite directions), at ipsilateral push off and contralateral touchdown. Early crossed facilitations were observed in the contralateral GL after TN stimulation during NW, and a reversal of such responses occurred during HW. These results underline the functional significance of short-latency crossed responses and represent the first evidence for short-latency reflex reversal in the contralateral limb for humans. Muscle afferents seem to mediate the response during NW, while during HW cutaneous afferents are likely involved. It is thus possible that different afferents mediate the crossed response during different tasks.


2015 ◽  
Vol 113 (6) ◽  
pp. 1772-1783 ◽  
Author(s):  
Julien Bacqué-Cazenave ◽  
Bryce Chung ◽  
David W. Cofer ◽  
Daniel Cattaert ◽  
Donald H. Edwards

Neuromechanical simulation was used to determine whether proposed thoracic circuit mechanisms for the control of leg elevation and depression in crayfish could account for the responses of an experimental hybrid neuromechanical preparation when the proprioceptive feedback loop was open and closed. The hybrid neuromechanical preparation consisted of a computational model of the fifth crayfish leg driven in real time by the experimentally recorded activity of the levator and depressor (Lev/Dep) nerves of an in vitro preparation of the crayfish thoracic nerve cord. Up and down movements of the model leg evoked by motor nerve activity released and stretched the model coxobasal chordotonal organ (CBCO); variations in the CBCO length were used to drive identical variations in the length of the live CBCO in the in vitro preparation. CBCO afferent responses provided proprioceptive feedback to affect the thoracic motor output. Experiments performed with this hybrid neuromechanical preparation were simulated with a neuromechanical model in which a computational circuit model represented the relevant thoracic circuitry. Model simulations were able to reproduce the hybrid neuromechanical experimental results to show that proposed circuit mechanisms with sensory feedback could account for resistance reflexes displayed in the quiescent state and for reflex reversal and spontaneous Lev/Dep bursting seen in the active state.


1990 ◽  
Vol 63 (5) ◽  
pp. 1109-1117 ◽  
Author(s):  
J. F. Yang ◽  
R. B. Stein

1. Reflex responses during walking were elicited in humans by stimulation of the tibial nerve at the ankle. The stimulus intensity was controlled by monitoring the M-wave from an intrinsic foot muscle. Responses were observed in the ipsilateral tibialis anterior (TA), soleus (SO), and rectus femoris (RF) muscles. The most reproducible responses were observed at a middle latency between 50 and 90 ms. The responses were most likely of cutaneous origin, because they closely resembled the responses to stimulation of a purely cutaneous nerve, the sural nerve. 2. A reversal in the direction of the middle latency response from excitation to inhibition was observed for the first time within single muscles during walking. Evidence for a reversal was seen in all three muscles examined and in all seven subjects. 3. The reflex reversal could not be elicited in standing. An inhibition whose amplitude varied in a linear fashion with stimulus intensity and background activation level was always observed at middle latency. The responses elicited during standing resembled those during the stance phase of walking. The two tasks shared some common movement goals and appeared to make use of similar reflex pathways.


1991 ◽  
Vol 85 ◽  
pp. 61-65 ◽  
Author(s):  
Z. Tomori ◽  
R. Beňačka ◽  
V. Donič ◽  
R. Tkačová
Keyword(s):  

Respiration ◽  
1981 ◽  
pp. 495-506
Author(s):  
Z. Tomori ◽  
K. Javorka ◽  
A. Stránsky ◽  
J. Jakuš

Sign in / Sign up

Export Citation Format

Share Document