sensory feedback
Recently Published Documents


TOTAL DOCUMENTS

956
(FIVE YEARS 241)

H-INDEX

63
(FIVE YEARS 8)

2022 ◽  
pp. 174702182210756
Author(s):  
Matthias K. Franken ◽  
Robert J Hartsuiker ◽  
Petter Johansson ◽  
Lars Hall ◽  
Andreas Lind

Sensory feedback plays an important role in speech motor control. One of the main sources of evidence for this are studies where online auditory feedback is perturbed during ongoing speech. In motor control, it is therefore crucial to distinguish between sensory feedback and externally generated sensory events. This is called source monitoring. Previous altered feedback studies have taken non-conscious source monitoring for granted, as automatic responses to altered sensory feedback imply that the feedback changes are processed as self-caused. However, the role of conscious source monitoring is unclear. The current study investigated whether conscious source monitoring modulates responses to unexpected pitch changes in auditory feedback. During a first block, some participants spontaneously attributed the pitch shifts to themselves (self-blamers) while others attributed them to an external source (other-blamers). Before block 2, all participants were informed that the pitch shifts were experimentally induced. The self-blamers then showed a reduction in response magnitude in block 2 compared with block 1, while the other-blamers did not. This suggests that conscious source monitoring modulates responses to altered auditory feedback, such that consciously ascribing feedback to oneself leads to larger compensation responses. These results can be accounted for within the dominant comparator framework, where conscious source monitoring could modulate the gain on sensory feedback. Alternatively, the results can be naturally explained from an inferential framework, where conscious knowledge may bias the priors in a Bayesian process to determine the most likely source of a sensory event.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Omid G Sani ◽  
Maryam M Shanechi

Investigating how an artificial network of neurons controls a simulated arm suggests that rotational patterns of activity in the motor cortex may rely on sensory feedback from the moving limb.


2021 ◽  
Author(s):  
James McGregor ◽  
Abigail Grassler ◽  
Paul I. Jaffe ◽  
Amanda Louise Jacob ◽  
Michael Brainard ◽  
...  

Songbirds and humans share the ability to adaptively modify their vocalizations based on sensory feedback. Prior studies have focused primarily on the role that auditory feedback plays in shaping vocal output throughout life. In contrast, it is unclear whether and how non-auditory information drives vocal plasticity. Here, we first used a reinforcement learning paradigm to establish that non-auditory feedback can drive vocal learning in adult songbirds. We then assessed the role of a songbird basal ganglia-thalamocortical pathway critical to auditory vocal learning in this novel form of vocal plasticity. We found that both this circuit and its dopaminergic inputs are necessary for non-auditory vocal learning, demonstrating that this pathway is not specialized exclusively for auditory-driven vocal learning. The ability of this circuit to use both auditory and non-auditory information to guide vocal learning may reflect a general principle for the neural systems that support vocal plasticity across species.


Prosthesis ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 415-427
Author(s):  
Simon Hazubski ◽  
Derya Bamerni ◽  
Andreas Otte

(1) Background: This paper presents a conceptual design for an anthropomorphic replacement hand made of silicone that integrates a sensory feedback system. In combination with a motorized orthosis, it allows performing movements and registering information on the flexion and the pressure of the fingers. (2) Methods: To create the replacement hand, a three-dimensional (3D) scanner was used to scan the hand of the test person. With computer-aided design (CAD), a mold was created from the hand, then 3D-printed. Bending and force sensors were attached to the mold before silicone casting to implement the sensory feedback system. To achieve a functional and anthropomorphic appearance of the replacement hand, a material analysis was carried out. In two different test series, the properties of the used silicones were analyzed regarding their mechanical properties and the manufacturing process. (3) Results: Individual fingers and an entire hand with integrated sensors were realized, which demonstrated in several tests that sensory feedback in such an anthropomorphic replacement hand can be realized. Nevertheless, the choice of silicone material remains an open challenge, as there is a trade-off between the hardness of the material and the maximum mechanical force of the orthosis. (4) Conclusion: Apart from manufacturing-related issues, it is possible to cost-effectively create a personalized, anthropomorphic replacement hand, including sensory feedback, by using 3D scanning and 3D printing techniques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Belkis Ezgi Arikan ◽  
Bianca M. van Kemenade ◽  
Katja Fiehler ◽  
Tilo Kircher ◽  
Knut Drewing ◽  
...  

AbstractAdaptation to delays between actions and sensory feedback is important for efficiently interacting with our environment. Adaptation may rely on predictions of action-feedback pairing (motor-sensory component), or predictions of tactile-proprioceptive sensation from the action and sensory feedback of the action (inter-sensory component). Reliability of temporal information might differ across sensory feedback modalities (e.g. auditory or visual), which in turn influences adaptation. Here, we investigated the role of motor-sensory and inter-sensory components on sensorimotor temporal recalibration for motor-auditory (button press-tone) and motor-visual (button press-Gabor patch) events. In the adaptation phase of the experiment, action-feedback pairs were presented with systematic temporal delays (0 ms or 150 ms). In the subsequent test phase, audio/visual feedback of the action were presented with variable delays. The participants were then asked whether they detected a delay. To disentangle motor-sensory from inter-sensory component, we varied movements (active button press or passive depression of button) at adaptation and test. Our results suggest that motor-auditory recalibration is mainly driven by the motor-sensory component, whereas motor-visual recalibration is mainly driven by the inter-sensory component. Recalibration transferred from vision to audition, but not from audition to vision. These results indicate that motor-sensory and inter-sensory components contribute to recalibration in a modality-dependent manner.


2021 ◽  
pp. 230-234
Author(s):  
Zakaria Djebbara ◽  
Klaus Gramann

In the article discussed in this chapter, the authors describe a framework of neuroaesthetics for architectural experiences that considers sensory feedback stemming from movement central for the experience of the built environment. As we move through space when experiencing architecture, our sensory impressions change, rendering the body and the brain as nondissociable agents of aesthetic experience. This interaction is described by the term affordance. The authors cast the human experience of the built environment to be predicated on the functional relation between action and perception and developed a neuroscientific experiment on architectural transitions to investigate how the human brain reflects architectural affordances. They found that varying sizes of transitions, reflecting different affordances, impact early perceptual processes, suggesting that our perception is indeed colored by the action potentials afforded by the composed space. In conclusion, the shape of space resonates with our embodied predictions regarding movement.


2021 ◽  
Author(s):  
Michael Elbaz ◽  
Maxime Demers ◽  
David Kleinfeld ◽  
Christian Ethier ◽  
Martin Deschenes

Whether using our eyes or our hands, we interact with our environment through mobile sensors. The efficient use of these sensory organs implies the ability to track their position; otherwise, perceptual stability and prehension would be profoundly impeded. The nervous system may be informed about the position of a sensory organ via two complementary feedback mechanisms: peripheral reafference (external, sensory feedback) and efference copy (internal feedback). Yet, the potential contributions of these mechanisms remain largely unexplored. By training rats to place their vibrissae within a predetermined angular range without contact, a task that depends on knowledge of vibrissa position relative to their face, we found that peripheral reafference is not required. The presence of motor cortex is not required either, even in the absence of peripheral reafference. On the other hand, the red nucleus, which receives descending inputs from motor cortex and the cerebellum and projects to facial motoneurons, is critical for the execution of the vibrissa task. All told, our results demonstrate the existence of an open-loop control by an internal model that is sufficient to drive voluntary motion. The internal model is independent of motor cortex and likely contains the cerebellum and associated nuclei.


Sign in / Sign up

Export Citation Format

Share Document