contralateral limb
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 63)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
pp. JN-RM-0232-21
Author(s):  
Eric Mooshagian ◽  
Eric A. Yttri ◽  
Arthur D. Loewy ◽  
Lawrence H. Snyder

2022 ◽  
Author(s):  
Arie Nakhmani ◽  
Joseph Olson ◽  
Zachary Irwin ◽  
Lloyd Edwards ◽  
Christopher Gonzalez ◽  
...  

Background: Dystonia is a prevalent yet under-studied motor feature of Parkinson disease (PD). Although considerable efforts have focused on brain oscillations related to the cardinal symptoms of PD, whether dystonia is associated with specific electrophysiological features is unclear. Objectives: To investigate subcortical and cortical field potentials at rest and during contralateral hand and foot movements in PD patients with versus without dystonia. Methods: We examined the prevalence and somatotopy of dystonia in PD patients undergoing deep brain stimulation (DBS) surgery. We recorded intracranial electrophysiology from sensorimotor cortex and directional DBS electrodes in subthalamic nucleus (STN), during both rest and voluntary contralateral limb movements. We used wavelet transforms and linear mixed models to characterize spectral content in patients with and without dystonia (n=25). Results: Dystonia was highly prevalent at enrollment (61%) and most common in the foot (78%). PD patients with dystonia display greater subthalamic theta and alpha power during movement (p < 0.05) but not at rest. Regardless of dystonia status, cortical recordings display prominent beta desynchronization (13-30 Hz) during movement, whereas STN signals show increases in spectral power at lower frequencies (4-20 Hz), with peaks at 6.0 +/- 3.3 and 4.2 +/- 2.9 Hz during hand and foot movements, respectively (p < 0.03). Conclusions: Whereas cortex was characterized by beta desynchronization during hand and foot movements similarly, STN showed limb-specific low frequency activity which was increased in PD patients with dystonia. These findings may help elucidate why PD-related dystonia is most common in the foot and help guide future closed-loop DBS devices.


2021 ◽  
Vol 15 ◽  
Author(s):  
Richy Yun ◽  
Andrew R. Bogaard ◽  
Andrew G. Richardson ◽  
Stavros Zanos ◽  
Steve I. Perlmutter ◽  
...  

Cortical stimulation (CS) of the motor cortex can cause excitability changes in both hemispheres, showing potential to be a technique for clinical rehabilitation of motor function. However, previous studies that have investigated the effects of delivering CS during movement typically focus on a single hemisphere. On the other hand, studies exploring interhemispheric interactions typically deliver CS at rest. We sought to bridge these two approaches by documenting the consequences of delivering CS to a single motor cortex during different phases of contralateral and ipsilateral limb movement, and simultaneously assessing changes in interactions within and between the hemispheres via local field potential (LFP) recordings. Three macaques were trained in a unimanual reaction time (RT) task and implanted with epidural or intracortical electrodes over bilateral motor cortices. During a given session CS was delivered to one hemisphere with respect to movements of either the contralateral or ipsilateral limb. Stimulation delivered before contralateral limb movement onset shortened the contralateral limb RT. In contrast, stimulation delivered after the end of contralateral movement increased contralateral RT but decreased ipsilateral RT. Stimulation delivered before ipsilateral limb movement decreased ipsilateral RT. All other stimulus conditions as well as random stimulation and periodic stimulation did not have consistently significant effects on either limb. Simultaneous LFP recordings from one animal revealed correlations between changes in interhemispheric alpha band coherence and changes in RT, suggesting that alpha activity may be indicative of interhemispheric communication. These results show that changes caused by CS to the functional coupling within and between precentral cortices is contingent on the timing of CS relative to movement.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Raul Filipe Bartolomeu ◽  
Pedro Rodrigues ◽  
Catarina Costa Santos ◽  
Mário Jorge Costa ◽  
Tiago Manuel Barbosa

The different characteristics of the four swimming strokes affect the interplay between the four limbs, acting as a constraint to the force produced by each hand and foot. The purpose of this study was to analyze the symmetry of force production with a varying number of limbs in action and see its effect on velocity. Fifteen male swimmers performed four all-out bouts of 25-m swims in the four strokes in full-body stroke and segmental actions. A differential pressure system was used to measure the hands/feet propulsive force and a mechanical velocity meter was used to measure swimming velocity. Symmetry index was calculated based on the force values. All strokes and conditions presented contralateral limb asymmetries (ranging from 6.73% to 28% for the peak force and from 9.3% to 35.7% for the mean force). Backstroke was the most asymmetric stroke, followed-up by butterfly, front crawl, and breaststroke. Kicking conditions elicited the higher asymmetries compared with arm-pull conditions. No significant associations were found between asymmetries and velocity. The absence of such association suggests that, to a certain and unknown extent, swimming may benefit from contralateral limb asymmetry.


VASA ◽  
2021 ◽  
Author(s):  
Victoria Klüsch ◽  
Erin C. Boyle ◽  
Saad Rustum ◽  
Maximilian Franz ◽  
Tjoung-Won Park-Simon ◽  
...  

Summary: Drainage of the arterial wall via adventitial lymphatic vessels has been shown to play a pivotal role for vessel wall homeostasis. Also, retrograde cholesterol transport is ensured via this route, but no studies exist to demonstrate that lymphatic stasis would represent a mechanism to initiate atherosclerotic lesion formation in human arteries. To test this hypothesis, we embarked on a simple clinical experiment, assessing wall thickness in limb arteries with lymphedema after surgical intervention, with the contralateral limb serving as control. Using ultrasound imaging, the differential thickness was assessed separately for the three arterial wall layers. The potential of disease progression by lymphostasis was addressed by depiction of longitudinal results according to the time after lymph dissection.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Scott K. Crawford ◽  
Christa M. Wille ◽  
Mikel R. Stiffler-Joachim ◽  
Kenneth S. Lee ◽  
Greg R. Bashford ◽  
...  

Abstract Background Hamstring strain injury (HSI) diagnosis is often corroborated using ultrasound. Spatial frequency analysis (SFA) is a quantitative ultrasound method that has proven useful in characterizing altered tissue organization. The purpose of this study was to determine changes in muscular tissue organization using SFA following HSI. Methods Ultrasound B-mode images were captured at time of injury (TOI) and return to sport (RTS) in collegiate athletes who sustained an HSI. Spatial frequency parameters extracted from two-dimensional Fourier Transforms in user-defined regions of interest (ROI) were analyzed. Separate ROIs encompassed injured and adjacent tissue within the same image of the injured limb and mirrored locations in the contralateral limb at TOI. The ROIs for RTS images were drawn to correspond to the injury-matched location determined from TOI imaging. Peak spatial frequency radius (PSFR) and the fascicular banded pattern relative to image background (Mmax%) were compared between injured and adjacent portions within the same image with separate paired t-tests. Within-image differences of SFA parameters in the injured limb were calculated and compared between TOI and RTS with Wilcoxon rank sum tests. Results Within the injured limb at TOI, PSFR differences in injured and healthy regions did not strictly meet statistical significance (p = 0.06), while Mmax% was different between regions (p < 0.001). No differences were observed between regions in the contralateral limb at TOI (PSFR, p = 0.16; Mmax%, p = 0.30). Significant within-image differences in PSFR (p = 0.03) and Mmax% (p = 0.04) at RTS were detected relative to TOI. Conclusions These findings are a first step in determining the usefulness of SFA in muscle injury characterization and provide quantitative assessment of both fascicular disruption and edema presence in acute HSI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel M. Nejatian ◽  
Salar Sobhi ◽  
Blake N. Sanchez ◽  
Kathryn Linn ◽  
Laurens Manning ◽  
...  

AbstractManagement of diabetes-related foot ulceration (DFU) includes pressure offloading resulting in a period of reduced activity. The metabolic effects of this are unknown. This study aims to investigate changes in bone mineral density (BMD) and body composition 12 weeks after hospitalisation for DFU. A longitudinal, prospective, observational study of 22 people hospitalised for DFU was conducted. Total body, lumbar spine, hip and forearm BMD, and total lean and fat mass were measured by dual-energy X-ray absorptiometry (DXA) during and 12 weeks after hospitalisation for DFU. Significant losses in total hip BMD of the ipsilateral limb (− 1.7%, p < 0.001), total hip BMD of the contralateral limb (− 1.4%, p = 0.005), femoral neck BMD of the ipsilateral limb (− 2.8%, p < 0.001) and femoral neck BMD of the contralateral limb (− 2.2%, p = 0.008) were observed after 12 weeks. Lumbar spine and forearm BMD were unchanged. HbA1c improved from 75 mmol/mol (9.2%) to 64 mmol/mol (8.0%) (p = 0.002). No significant changes to lean and fat mass were demonstrated. Total hip and femoral neck BMD decreased bilaterally 12 weeks after hospitalisation for DFU. Future research is required to confirm the persistence and clinical implications of these losses.


2021 ◽  
Vol 8 ◽  
Author(s):  
Amanda R. Watkins ◽  
Klaus Hopster ◽  
David Levine ◽  
Samuel D. Hurcombe

A 20-year-old Quarter Horse gelding was presented with severe right forelimb lameness (5/5 AAEP Lameness Scale) due to a tear of the superficial digital flexor muscle which was diagnosed via palpation of swelling and ultrasonography revealing major muscle fiber disruption and hematoma formation. When traditional systemic therapy (non-Steroidal anti-inflammatories) did not restore clinically acceptable comfort and the risk of supporting limb laminitis became a reasonable concern, a cervical epidural catheter was placed between the first and second cervical vertebrae in the standing, sedated patient using ultrasound guidance. The gelding was treated with epidural morphine (0.1 mg/kg every 24 h then decreased to 0.05 mg/kg every 12 h) and was pain-scored serially following treatment. Spinal analgesia was provided for 3 days. Pain scores significantly decreased following each treatment with morphine, and the gelding was successfully managed through the acutely painful period without any adverse effects associated with the C1-C2 epidural catheter placement technique, the epidural morphine, or contralateral limb laminitis. At the 2-month follow-up, the gelding was walking sound with no complications seen at the catheter insertion site. In this case, spinal analgesia using epidural morphine administered via a cervical epidural catheter was an effective and technically achievable option for pain management associated with severe forelimb muscle injury in a horse.


Sign in / Sign up

Export Citation Format

Share Document